Patents by Inventor Robert Steele

Robert Steele has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130039050
    Abstract: In one embodiment, a solid-state luminaire has a strip of high power LEDs, where each LED emits light into an optical coupler. Light from the optical coupler is then coupled into a light guide. Light coupled into the light guide is mixed and guided to an exit aperture of the light guide. An optical extractor proximate the exit aperture of the light guide redirects light outward, which is optionally redirected generally downward by a secondary reflector that extends outwardly along the length of the light guide. The secondary reflector may be configured to create a variety of light-emission patterns. The luminaire may be hung from a ceiling, in track lighting, used as a pendant or pedestal fixture, or in other applications.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: QUARKSTAR, LLC
    Inventors: Wilson Dau, Robert Gardner, George Lerman, Louis Lerman, Chris Lowery, Brian D. Ogonowsky, George E. Smith, Ingo Speier, Robert Steele, Jacqueline Teng, Allan Brent York
  • Patent number: 8344397
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: January 1, 2013
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20120329930
    Abstract: An effective hydrogen sulfide scavenger that produces little corrosion may be prepared by reacting glyoxal with a compound having at least two primary or secondary amine groups. The subject hydrogen sulfide scavengers may be used with both the production of crude oil and natural gas, and the refining of same.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Joseph L. Stark, Robert A. Steele, Ksenija Babic-Samardzija, John A. Schield, Weldon J. Cappel, Matthew T. Barnes
  • Patent number: 8338839
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: December 25, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8338199
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare blue-light LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. In one embodiment, an intermediate sheet having holes is then affixed to the bottom substrate, with the LEDs passing through the holes. A transparent top substrate having conductors is then laminated over the intermediate sheet. In another embodiment, no intermediate sheet is used. Various ways to connect the LEDs in series are described along with many embodiments. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture. A phosphor is used to generate white light.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 25, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8338842
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: December 25, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8338840
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: December 25, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8338841
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: December 25, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8331582
    Abstract: The invention relates to adaptive directional systems, and more particularly to a method and apparatus for producing adaptive directional signals. The invention may be applied to the provision of audio frequency adaptive directional microphone systems for devices such as hearing aids and mobile telephones. The method involves constructing the adaptive directional signal (46) from a weighted sum of a first signal (42A) having an omni-directional polar pattern and a second signal (42B) having a bi-directional polar pattern, wherein the weights are calculated to give the combined signal a constant gain in a predetermined direction and to minimize the power of the combined signal. The method has particular application in producing signals in digital hearing aids, the predetermined direction being in the forward direction with respect to the wearer.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 11, 2012
    Assignee: Wolfson Dynamic Hearing Pty Ltd
    Inventor: Brenton Robert Steele
  • Publication number: 20120310846
    Abstract: A system, a method and a computer program for determining multiple copyright infringement events, identifying a particular IP address—port number combination associated with the multiple infringement events, and notifying an ISP and/or a customer regarding the multiple copyright infringement events.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Inventor: Robert Steele
  • Patent number: 8314566
    Abstract: In one embodiment, an LED lamp has a generally bulb shape. The LEDs are low power types and are encapsulated in thin, narrow, flexible strips. The LEDs are connected in series in the strips to drop a desired voltage. The strips are affixed to the outer surface of a bulb form to provide structure to the lamp. The strips are connected in parallel to a power supply, which may be housed in the lamp. Since many low power LEDs are used and are spread out over a large surface area, there is no need for a large metal heat sink. Further, the light emission is similar to that of an incandescent bulb. In other embodiment, there is no bulb form and the strips are bendable to have a variety of shapes. In another embodiment, a light sheet is bent to provide 360 degrees of light emission. Many other embodiments are described.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 20, 2012
    Assignee: Quarkstar LLC
    Inventors: Robert Steele, Louis Lerman, Allan Brent York, Wilson Dau, Jacqueline Teng, George Lerman
  • Publication number: 20120268932
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate having conductors is then laminated over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. The light sheets may be formed to emit light from opposite surfaces of the light sheet, enabling it to be used in a hanging fixture to illuminate the ceiling as well as the floor. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicant: QUARKSTAR LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20120268931
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate having conductors is then laminated over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. The light sheets may be formed to emit light from opposite surfaces of the light sheet, enabling it to be used in a hanging fixture to illuminate the ceiling as well as the floor. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Applicant: QUARKSTAR LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8242518
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: August 14, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8210716
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate having conductors is then laminated over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. The light sheets may be formed to emit light from opposite surfaces of the light sheet, enabling it to be used in a hanging fixture to illuminate the ceiling as well as the floor. The light sheet provides a practical substitute for a standard 2×4 foot fluorescent ceiling fixture.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: July 3, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Patent number: 8198109
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate. In another embodiment, a conductor layer is formed on the outer surface of the top substrate and makes contact with the LED electrodes and conductors on the bottom substrate via openings formed in the top substrate.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 12, 2012
    Assignee: Quarkstar LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20110204390
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Applicant: QUARKSTAR, LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20110204391
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 25, 2011
    Applicant: QUARKSTAR, LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20110198632
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: QUARKSTAR, LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky
  • Publication number: 20110198631
    Abstract: A solid state light sheet and method of fabricating the sheet are disclosed. In one embodiment, bare LED chips have top and bottom electrodes, where the bottom electrode is a large reflective electrode. The bottom electrodes of an array of LEDs (e.g., 500 LEDs) are bonded to an array of electrodes formed on a flexible bottom substrate. Conductive traces are formed on the bottom substrate connected to the electrodes. A transparent top substrate is then formed over the bottom substrate. Various ways to connect the LEDs in series are described along with many embodiments. In one method, the top substrate contains a conductor pattern that connects to LED electrodes and conductors on the bottom substrate.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 18, 2011
    Applicant: QUARKSTAR, LLC
    Inventors: Louis Lerman, Allan Brent York, Michael David Henry, Robert Steele, Brian D. Ogonowsky