Patents by Inventor Robert T. Chang

Robert T. Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240024107
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Patent number: 11793639
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: October 24, 2023
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Publication number: 20210361427
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the right atrium, which allow tricuspid valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant. The implants or systems of implants and methods may utilize a bridge stop to secure the implant.
    Type: Application
    Filed: August 6, 2021
    Publication date: November 25, 2021
    Inventors: Robert T. Chang, Timothy R. Machold, David A. Rahdert, Jason Rogers
  • Patent number: 11083578
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the right atrium, which allow tricuspid valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant. The implants or systems of implants and methods may utilize a bridge stop to secure the implant.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: August 10, 2021
    Assignee: MVRx, Inc.
    Inventors: Robert T. Chang, Timothy R. Machold, David A. Rahdert, Jason Rogers
  • Publication number: 20210022864
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Application
    Filed: October 8, 2020
    Publication date: January 28, 2021
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Patent number: 10849744
    Abstract: The disclosure pertains to a vessel for holding replacement heart valves and associated positioning and installation apparatus which is configured and adapted to contain a biocidal sterilization fluid during and following exposure of a delivery system for the replacement heart valve to sterilization by ionizing radiation and methods of use therefor. The vessel includes a shield which limits exposure of biologically derived material therein to radiation. The vessel also provides a storage and shipping container for the replacement heart valve in which the biologically derived material is maintained in a sterile fluid environment.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: December 1, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert T. Chang, Brian K. McCollum, Michael J. Conroy
  • Patent number: 10799354
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors, and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 13, 2020
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Publication number: 20200223598
    Abstract: Single-dose vials for liquid solutions (e.g., liquid medicaments) can be designed to be used in conjunction with a medication regimen. A single-dose vial may include a removable member that prevents a liquid solution from escaping, but also allows an individual (e.g., a patient or a medical professional) to readily administer the liquid solution. A single-dose vial could include one or more discrete capsules that include the same or different liquid solutions. For example, multiple capsules could be arranged within a vial so that different liquid solutions are simultaneously or sequentially ejected following removal of the removable member and application of pressure to the multiple capsules (e.g., due to the individual squeezing the vial). Multiple vials can also be connected to one another in a strip configuration, which allows the individual to more easily adhere to a medication regimen that requires multiple doses over a period of time.
    Type: Application
    Filed: December 2, 2019
    Publication date: July 16, 2020
    Inventors: Robert T. Chang, Paolo De Marino, Manishi A. Desai
  • Publication number: 20200139165
    Abstract: Systems and methods for respiratory health management are provided. An air filtration and analysis system may comprise an apparatus configured to be worn by a user. The apparatus may comprise a filtration device. The system may also include a plurality of sensors configured to collect data. A portion of the sensor data may be indicative of (i) one or more characteristics of the air inhaled and/or exhaled by the user, and/or (ii) an environment in which the user is located. At least one sensor and/or the apparatus may be in communication with a processor that is configured to analyze the collected sensor data.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Eric R. Sokol, Jan Liphardt, Robert T. Chang
  • Patent number: 10543386
    Abstract: Systems and methods for respiratory health management are provided. An air filtration and analysis system may comprise an apparatus configured to be worn by a user. The apparatus may comprise a filtration device. The system may also include a plurality of sensors configured to collect data. A portion of the sensor data may be indicative of (i) one or more characteristics of the air inhaled and/or exhaled by the user, and/or (ii) an environment in which the user is located. At least one sensor and/or the apparatus may be in communication with a processor that is configured to analyze the collected sensor data.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: January 28, 2020
    Assignee: ADVANCED VENTILATION APPLICATIONS, INC.
    Inventors: Eric R. Sokol, Jan Liphardt, Robert T. Chang
  • Patent number: 10494157
    Abstract: Single-dose vials for liquid solutions (e.g., liquid medicaments) can be designed to be used in conjunction with a medication regimen. A single-dose vial may include a removable member that prevents a liquid solution from escaping, but also allows an individual (e.g., a patient or a medical professional) to readily administer the liquid solution. A single-dose vial could include one or more discrete capsules that include the same or different liquid solutions. For example, multiple capsules could be arranged within a vial so that different liquid solutions are simultaneously or sequentially ejected following removal of the removable member and application of pressure to the multiple capsules (e.g., due to the individual squeezing the vial). Multiple vials can also be connected to one another in a strip configuration, which allows the individual to more easily adhere to a medication regimen that requires multiple doses over a period of time.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: December 3, 2019
    Inventors: Robert T. Chang, Paolo De Marino, Manishi A. Desai
  • Patent number: 10398437
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: September 3, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, Robert T. Chang, David A. Rahdert, David Scott, David R. Tholfsen
  • Publication number: 20190183645
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors, and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Publication number: 20190175343
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the right atrium, which allow tricuspid valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant. The implants or systems of implants and methods may utilize a bridge stop to secure the implant.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 13, 2019
    Inventors: Robert T. Chang, Timothy R. Machold, David A. Rahdert, Jason Rogers
  • Publication number: 20190144174
    Abstract: Single-dose vials for liquid solutions (e.g., liquid medicaments) can be designed to be used in conjunction with a medication regimen. A single-dose vial may include a removable member that prevents a liquid solution from escaping, but also allows an individual (e.g., a patient or a medical professional) to readily administer the liquid solution. A single-dose vial could include one or more discrete capsules that include the same or different liquid solutions. For example, multiple capsules could be arranged within a vial so that different liquid solutions are simultaneously or sequentially ejected following removal of the removable member and application of pressure to the multiple capsules (e.g., due to the individual squeezing the vial). Multiple vials can also be connected to one another in a strip configuration, which allows the individual to more easily adhere to a medication regimen that requires multiple doses over a period of time.
    Type: Application
    Filed: June 15, 2017
    Publication date: May 16, 2019
    Inventors: Robert T. Chang, Paolo De Marino, Manishi A. Desai
  • Patent number: 10278818
    Abstract: Anchors for securing an implant within a body organ and/or reshaping a body organ are provided herein. Anchors are configured for deployment in a body lumen or vasculature of the patient that are curved or conformable to accommodate anatomy of the patient. Such anchors can include deformable or collapsible structures upon tensioning of a bridging element in a lateral direction, or segmented tubes that can be adjusted by tightening of one or more tethers extending therethrough. Such anchors can be used as a posterior anchor in a blood vessel in implant systems having a tensioned bridging element extending between the posterior anchor and an anterior anchor deployed at another location within or along the body organ. Methods of deploying such anchors, and use of multiple anchors or multiple bridging elements to a single anchor are also provided.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: May 7, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David A. Rahdert, Robert T. Chang, Ganesh Manoharan
  • Patent number: 10219905
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: March 5, 2019
    Assignee: MVRx, Inc.
    Inventors: Robert T. Chang, John A. Macoviak, David A. Rahdert, Timothy R. Machold
  • Patent number: 10219902
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial adjustability and retrievability years after implant. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize an adjustable bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: March 5, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, David J. Scott, David A. Rahdert, David R. Tholfsen, Robert T. Chang, John A. Macoviak
  • Patent number: 10201423
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the right atrium, which allow tricuspid valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant. The implants or systems of implants and methods may utilize a bridge stop to secure the implant.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: February 12, 2019
    Assignee: MVRx, Inc.
    Inventors: Robert T. Chang, Timothy R. Machold, David A. Rahdert, Jason Rogers
  • Patent number: 10172621
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 8, 2019
    Assignee: MVRx, Inc.
    Inventors: Timothy R. Machold, Robert T. Chang, David A. Rahdert, David Scott, David R. Tholfsen