Patents by Inventor Robert T. Croswell

Robert T. Croswell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11723057
    Abstract: A device, system and method for radio-frequency emissions control is provided. The device comprises: a communication unit configured to communicate via main radio channels and a control channel, the main radio channels contributing to radio-frequency (RF) emissions; and a controller interconnected with the communication unit. The controller is configured to: receive, via the communication unit communicating over the control channel, an RF emissions control command to reduce the RF emissions emitted by the communication unit; and in response to receiving the RF emissions control command, control one or more of the communication unit and activity on the main radio channels to reduce the RF emissions.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: August 8, 2023
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Robert T. Croswell, Bruce D. Mueller, Rodger W. Caruthers, Duane S. Andres, Randall Brace
  • Patent number: 11291014
    Abstract: A device, system and method for radio-frequency emissions control is provided. The device comprises: a communication unit configured to communicate via main radio channels and a control channel, the main radio channels contributing to radio-frequency (RF) emissions; and a controller interconnected with the communication unit. The controller is configured to: receive, via the communication unit communicating over the control channel, an RF emissions control command to reduce the RF emissions emitted by the communication unit; and in response to receiving the RF emissions control command, control one or more of the communication unit and activity on the main radio channels to reduce the RF emissions.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: March 29, 2022
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Robert T. Croswell, Bruce D. Mueller, Rodger W. Caruthers, Duane S. Andres, Randall Brace
  • Patent number: 11108430
    Abstract: A device, system and method for frequency hopping control is provided. The device comprises: a communication unit configured to communicate via main radio channels and a control channel; and a controller interconnected with the communication unit. The controller is configured to: receive, via the communication unit communicating over the control channel, a frequency hopping control command comprising a list of one or more hopping frequencies for frequency hopping; and in response to receiving the frequency hopping control command, control the communication unit to communicate via the main radio channels using frequency hopping according to the one or more hopping frequencies.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 31, 2021
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Robert T. Croswell, Bruce D. Mueller, Rodger W. Caruthers, Duane S. Andres, Randall Brace
  • Patent number: 8947534
    Abstract: A device for use with an imaging system that is operable to provide an image signal based on an object disposed at a first distance from the imaging system. The imaging system includes a first camera, a second camera and a display. The first camera is operable to generate a first image signal based on the object and includes a first optics system and a first detector. The first optics system has a focal length, whereas the first detector has a resolution. The second camera is operable to generate a second image signal based on the object. The second camera includes a second optics system and a second detector. The second optics system has the same focal length of the first optics system and the second detector has the same resolution as the first detector. The second camera is separated from the first camera by a second distance. The display is operable to display an image based on a modified image.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: February 3, 2015
    Assignee: Google Technology Holdings LLC
    Inventors: Gregory J. Dunn, Robert T. Croswell, Zhiyuan Z. Li
  • Publication number: 20100315510
    Abstract: A device for use with an imaging system that is operable to provide an image signal based on an object disposed at a first distance from the imaging system. The imaging system includes a first camera, a second camera and a display. The first camera is operable to generate a first image signal based on the object and includes a first optics system and a first detector. The first optics system has a focal length, whereas the first detector has a resolution. The second camera is operable to generate a second image signal based on the object. The second camera includes a second optics system and a second detector. The second optics system has the same focal length of the first optics system and the second detector has the same resolution as the first detector. The second camera is separated from the first camera by a second distance. The display is operable to display an image based on a modified image.
    Type: Application
    Filed: June 11, 2009
    Publication date: December 16, 2010
    Applicant: Motorola, Inc.
    Inventors: Gregory J. Dunn, Robert T. Croswell, Zhiyuan Z. Li
  • Patent number: 7833292
    Abstract: An improved method for forming a capacitor. The method includes providing a carrier with a channel therein, providing a metal foil with a valve metal with a first dielectric on a first face of the metal foil, securing the metal foil into the channel with the first dielectric away from a channel floor, inserting an insulative material between the metal foil and each side wall of the channel, forming a cathode layer on the first dielectric between the insulative material, forming a conductive layer on the cathode layer and in electrical contact with the carrier, lap cutting the carrier parallel to the metal foil such that the valve metal is exposed, and dice cutting to form singulated capacitors.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: November 16, 2010
    Assignee: KEMET Electronics Corporation
    Inventors: Keith R. Brenneman, Chris Wayne, Chris Stolarski, John T Kinard, Alethia Melody, Gregory J. Dunn, Remy J. Chelini, Robert T. Croswell
  • Publication number: 20100246605
    Abstract: A method of presenting content from a remote device is provided. Limited bandwidth content, transmitted from a remote device, is received at a local device. The limited bandwidth content is superimposed on enhanced content retrieved by the local device. The limited bandwidth content overlaps with the enhanced content such that the limited bandwidth content is a subset of what is represented by the enhanced content. The limited bandwidth or enhanced content may either be still images or video that is stitched together and displayed at the local device.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: MOTOROLA, INC.
    Inventors: BRENT A. TAYLOR, ROBERT T. CROSWELL, GREGORY J. DUNN
  • Publication number: 20100177460
    Abstract: An improved method for forming a capacitor. The method includes: providing a carrier with a channel therein; providing a metal foil with a valve metal with a first dielectric on a first face of the metal foil; securing the metal foil into the channel with the first dielectric away from a channel floor; inserting an insulative material between the metal foil and each side wall of the channel; forming a cathode layer on the first dielectric between the insulative material; forming a conductive layer on the cathode layer and in electrical contact with the carrier; lap cutting the carrier parallel to the metal foil such that the valve metal is exposed; and dice cutting to form singulated capacitors.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 15, 2010
    Inventors: Keith R. Brenneman, Chris Wayne, Chris Stolarski, John T. Kinard, Alethia Melody, Gregory J. Dunn, Remy J. Chelini, Robert T. Croswell
  • Patent number: 7745281
    Abstract: An improved method for forming a capacitor. The method includes the steps of: providing a metal foil; forming a dielectric on the metal foil; applying a non-conductive polymer dam on the dielectric to isolate discrete regions of the dielectric; forming a cathode in at least one discrete region of the discrete regions on the dielectric; and cutting the metal foil at the non-conductive polymer dam to isolate at least one capacitor comprising one cathode, one discrete region of the dielectric and a portion of the metal foil with the discrete region of the dielectric.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: June 29, 2010
    Assignees: Kemet Electronics Corporation, Motorola, Inc.
    Inventors: John D. Prymak, Chris Stolarski, David Jacobs, Chris Wayne, Philip Lessner, John T. Kinard, Alethia Melody, Gregory Dunn, Robert T. Croswell, Remy J. Chelini
  • Patent number: 7528788
    Abstract: A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 5, 2009
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Robert T. Croswell, George H. Kumpf, John A. Svigelj
  • Publication number: 20080273291
    Abstract: An improved method for forming a capacitor. The method includes: providing a carrier with a channel therein; providing a metal foil with a valve metal with a first dielectric on a first face of the metal foil; securing the metal foil into the channel with the first dielectric away from a channel floor; inserting an insulative material between the metal foil and each side wall of the channel; forming a cathode layer on the first dielectric between the insulative material; forming a conductive layer on the cathode layer and in electrical contact with the carrier; lap cutting the carrier parallel to the metal foil such that the valve metal is exposed; and dice cutting to form singulated capacitors.
    Type: Application
    Filed: April 7, 2008
    Publication date: November 6, 2008
    Inventors: Keith R. Brenneman, Chris Wayne, Chris Stolarski, John T. Kinard, Alethia Melody, Gregory J. Dunn, Remy J. Chellni, Robert T. Croswell
  • Publication number: 20080272982
    Abstract: A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318).
    Type: Application
    Filed: July 17, 2008
    Publication date: November 6, 2008
    Applicant: MOTOROLA, INC.
    Inventors: Gregory J. Dunn, Robert T. Croswell, George H. Kumpf, John A. Svigelj
  • Publication number: 20080216296
    Abstract: An improved method for forming a capacitor. The method includes the steps of: providing a metal foil; forming a dielectric on the metal foil; applying a non-conductive polymer dam on the dielectric to isolate discrete regions of the dielectric; forming a cathode in at least one discrete region of the discrete regions on the dielectric; and cutting the metal foil at the non-conductive polymer dam to isolate at least one capacitor comprising one cathode, one discrete region of the dielectric and a portion of the metal foil with the discrete region of the dielectric.
    Type: Application
    Filed: February 14, 2008
    Publication date: September 11, 2008
    Inventors: John D. Prymak, Chris Stolarski, David Jacobs, Chris Wayne, Philip Lessner, John T. Kinard, Alethia Melody, Gregory Dunn, Robert T. Croswell, Remy J. Chelini
  • Patent number: 7423608
    Abstract: A high impedance surface (300) has a printed circuit board (302) with a first surface (314) and a second surface (316), and a continuous electrically conductive plate (319) disposed on the second surface (316) of the printed circuit board (302). A plurality of electrically conductive plates (318) is disposed on the first surface (314) of the printed circuit board (302), while a plurality of elements are also provided. Each element comprises at least one of (1) at least one multi-layer inductor (330, 331) electrically coupled between at least two of the electrically conductive plates (318) and embedded within the printed circuit board (302), and (2) at least one capacitor (320) electrically coupled between at least two of the electrically conductive plates (318).
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: September 9, 2008
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Robert T. Croswell, George H. Kumpf, John A. Svigelj
  • Patent number: 7361568
    Abstract: Embedded capacitors comprise a bimetal foil (500) that includes a first copper layer (205) and an aluminum layer (210) on the first copper layer. The aluminum layer has a smooth side adjacent the first copper layer and a high surface area textured side (215) opposite the first copper layer. The bimetal foil further includes an aluminum oxide layer (305) on the high surface area textured side of the aluminum layer, a conductive polymerlayer (420) on the aluminum oxide layer, and a second copper layer (535) overlying the aluminum oxide layer. The bimetal foil may be embedded in a circuit board (700) to form high value embedded capacitors.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: April 22, 2008
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Remy J. Chelini, Robert T. Croswell, Philip M. Lessner, Michael D. Prevallet, John D. Prymak
  • Patent number: 7193838
    Abstract: A dielectric circuit board foil (400, 600) includes a conductive metal foil layer (210, 660), a crystallized dielectric oxide layer (405, 655) disposed adjacent a first surface of the conductive metal foil layer, a lanthanum nickelate layer (414, 664) disposed on the crystallized dielectric oxide layer, and an electrode layer (415, 665) that is substantially made of one or more base metals disposed on the lanthanum nickelate layer. The foil (400, 600) may be adhered to a printed circuit board sub-structure (700) and used to economically fabricate a plurality of embedded capacitors, including isolated capacitors of large capacitive density (>1000 pf/mm2).
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: March 20, 2007
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Remy J. Chilini, Robert T. Croswell, Timothy B. Dean, Claudia V. Gamboa, Jovica Savic
  • Patent number: 7138068
    Abstract: A method is disclosed for fabricating a patterned embedded capacitance layer. The method includes fabricating (1305, 1310) a ceramic oxide layer (510) overlying a conductive metal layer (515) overlying a printed circuit substrate (505), perforating (1320) the ceramic oxide layer within a region (705), and removing (1325) the ceramic oxide layer and the conductive metal layer in the region by chemical etching of the conductive metal layer. The ceramic oxide layer may be less than 1 micron thick.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 21, 2006
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Robert T. Croswell, Jaroslaw A. Magera, Jovica Savic, Aroon V. Tungare
  • Patent number: 7056800
    Abstract: One of a plurality of capacitors embedded in a printed circuit structure includes a first electrode (415) overlaying a first substrate layer (505) of the printed circuit structure, a crystallized dielectric oxide core (405) overlaying the first electrode, a second electrode (615) overlying the crystallized dielectric oxide core, and a high temperature anti-oxidant layer (220) disposed between and contacting the crystallized dielectric oxide core and at least one of the first and second electrodes. The crystallized dielectric oxide core has a thickness that is less than 1 micron and has a capacitance density greater than 1000 pF/mm2. The material and thickness are the same for each of the plurality of capacitors. The crystallized dielectric oxide core may be isolated from crystallized dielectric oxide cores of all other capacitors of the plurality of capacitors.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: June 6, 2006
    Assignee: Motorola, Inc.
    Inventors: Robert T. Croswell, Gregory J. Dunn, Robert B. Lempkowski, Aroon V. Tungare, Jovica Savic
  • Patent number: 6891190
    Abstract: An organic semiconductor device (11) can be embedded within a printed wiring board (10). In various embodiments, the embedded device (11) can be accompanied by other organic semiconductor devices (31) and/or passive electrical components (26). When so embedded, conductive vias (41, 42, 43) can be used to facilitate electrical connection to the embedded device. In various embodiments, specific categories of materials and/or processing steps are used to facilitate the making of organic semiconductors and/or passive electrical components, embedded or otherwise.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: May 10, 2005
    Assignee: Motorola, Inc.
    Inventors: Ke Keryn Lian, Robert T. Croswell, Aroon Tungare, Manes Eliacin
  • Publication number: 20030218165
    Abstract: An organic semiconductor device (11) can be embedded within a printed wiring board (10). In various embodiments, the embedded device (11) can be accompanied by other organic semiconductor devices (31) and/or passive electrical components (26). When so embedded, conductive vias (41, 42, 43) can be used to facilitate electrical connection to the embedded device. In various embodiments, specific categories of materials and/or processing steps are used to facilitate the making of organic semiconductors and/or passive electrical components, embedded or otherwise.
    Type: Application
    Filed: May 23, 2002
    Publication date: November 27, 2003
    Applicant: Motorola, Inc.
    Inventors: Ke Keryn Lian, Robert T. Croswell, Aroon Tungare, Manes Eliacin