Patents by Inventor Robert T. Rozbicki

Robert T. Rozbicki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210294173
    Abstract: A tintable window is described having a tintable coating, e.g., an electrochromic device coating, for regulating light transmitted through the window. In some embodiments, the window has a transparent display in the window's viewable region. Transparent displays may be substantially transparent when not in use, or when the window is viewed in a direction facing away from the transparent display. Windows may have sensors for receiving user commands and/or for monitoring environmental conditions. Transparent displays can display graphical user interfaces to, e.g., control window functions. Windows, as described herein, offer an alternative display to conventional projectors, TVs, and monitors. Windows may also be configured to receive, transmit, or block wireless communications from passing through the window. A window control system may share computational resources between controllers (e.g., at different windows).
    Type: Application
    Filed: June 3, 2021
    Publication date: September 23, 2021
    Inventors: Nitesh Trikha, Stephen Clark Brown, Dhairya Shrivastava, Robert T. Rozbicki
  • Patent number: 11106105
    Abstract: Transparent conductive coatings are polished using particle slurries in combination with mechanical shearing force, such as a polishing pad. Substrates having transparent conductive coatings that are too rough and/or have too much haze, such that the substrate would not produce a suitable optical device, are polished using methods described herein. The substrate may be tempered prior to, or after, polishing. The polished substrates have low haze and sufficient smoothness to make high-quality optical devices.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: August 31, 2021
    Assignee: View, Inc.
    Inventors: Yashraj Bhatnagar, Robert T. Rozbicki, Rao Mulpuri
  • Patent number: 11079648
    Abstract: Electrochromic devices and methods may employ the addition of a defect-mitigating insulating layer which prevents electronically conducting layers and/or electrochromically active layers from contacting layers of the opposite polarity and creating a short circuit in regions where defects form. In some embodiments, an encapsulating layer is provided to encapsulate particles and prevent them from ejecting from the device stack and risking a short circuit when subsequent layers are deposited. The insulating layer may have an electronic resistivity of between about 1 and 108 Ohm-cm. In some embodiments, the insulating layer contains one or more of the following metal oxides: aluminum oxide, zinc oxide, tin oxide, silicon aluminum oxide, cerium oxide, tungsten oxide, nickel tungsten oxide, and oxidized indium tin oxide. Carbides, nitrides, oxynitrides, and oxycarbides may also be used.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: August 3, 2021
    Assignee: View, Inc.
    Inventor: Robert T. Rozbicki
  • Patent number: 11065845
    Abstract: Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 20, 2021
    Assignee: View, Inc.
    Inventors: Ronald M. Parker, Robert T. Rozbicki, Yashraj Bhatnagar, Abhishek Anant Dixit, Anshu A. Pradhan
  • Patent number: 11054711
    Abstract: Electromagnetic-shielding, electrochromic windows comprising a first multi-layer conductor, an electrochromic stack disposed on the first multi-layer conductor, and a second multi-layer conductor, wherein the one or more multi-layer conductors with an electromagnetic shielding stack configured to be activated to block electromagnetic communication signals through the windows.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 6, 2021
    Assignee: View, Inc.
    Inventors: Dhairya Shrivastava, Stephen Clark Brown, Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Publication number: 20210200049
    Abstract: Portable apparatus for identifying and mitigating defects in electronic devices disposed on substrates or windows are disclosed herein. Such defects can be visually perceived by the end user. The substrates or windows may include flat panel displays, photovoltaic windows, electrochromic devices, and the like, particularly electrochromic windows.
    Type: Application
    Filed: November 11, 2020
    Publication date: July 1, 2021
    Applicant: View, Inc.
    Inventors: Robert T. Rozbicki, Bruce Baxter, Trevor Frank
  • Publication number: 20210200053
    Abstract: Embodiments described include bus bars for electrochromic or other optical state changing devices. The bus bars are configured to color match and/or provide minimal optical contrast with their surrounding environment in the optical device. Such bus bars may be transparent bus bars.
    Type: Application
    Filed: February 17, 2021
    Publication date: July 1, 2021
    Inventors: Robert T. Rozbicki, Gordon E. Jack, Disha Mehtani
  • Patent number: 11048137
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: June 29, 2021
    Assignees: View, Inc., Corning Incorporated
    Inventors: Tom Toan-Cong Tran, Brian D. Griedel, Robert T. Rozbicki, Todd William Martin
  • Publication number: 20210191212
    Abstract: Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Applicant: View, Inc.
    Inventors: Tom Toan-Cong Tran, Brian D. Griedel, Robert T. Rozbicki, Todd William Martin
  • Publication number: 20210191221
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Application
    Filed: March 2, 2021
    Publication date: June 24, 2021
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen Clark Brown, David Walter Groechel, Robert T. Rozbicki
  • Publication number: 20210191216
    Abstract: Embodiments described include bus bars for electrochromic or other optical state changing devices. The bus bars are configured to color match and/or provide minimal optical contrast with their surrounding environment in the optical device. Such bus bars may be transparent bus bars.
    Type: Application
    Filed: November 20, 2020
    Publication date: June 24, 2021
    Inventors: Robert T. Rozbicki, Gordon E. Jack, Disha Mehtani, Robin Friedman
  • Publication number: 20210191214
    Abstract: Electrochromic devices with multi-layer conductors including one or more of a defect mitigation insulating layer, a color tuning layer and metal layer pair, and a transparent conductive oxide layer.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Inventors: Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Publication number: 20210191218
    Abstract: A tintable window is described having a tintable coating, e.g., an electrochromic device coating, for regulating or blocking light transmitted through the window. In some embodiments, the window can receive, transmit and/or regulate wireless communication that uses electromagnetic waves as a communication medium. In some cases, a window can receive or transmit infrared, visible, or ultraviolet wireless light fidelity (LiFi) signals. A window can be configured, in some cases selectively configured, for blocking radiation and/or signals generated by LiFi, radio frequency (RF), laser or other devices from passing through the window. Windows configured for blocking signals may be configured as a communication firewall between an interior environment and an exterior environment, or vice-versa. Networks of tintable windows can communicate via LiFi and provide a communications network through which other devices, such as personal computing devices, can be connected to the internet or a remote network.
    Type: Application
    Filed: June 11, 2019
    Publication date: June 24, 2021
    Inventors: Nitesh Trikha, Robert T. Rozbicki, John Gordon Halbert Mathew, Nigel Gormly
  • Publication number: 20210191215
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki
  • Publication number: 20210132458
    Abstract: A tintable window is described having a tintable coating, e.g., an electrochromic device coating, for regulating light transmitted through the window. In some embodiments, the window has a transparent display in the window's viewable region. Transparent displays may be substantially transparent when not in use, or when the window is viewed in a direction facing away from the transparent display. Windows may have sensors for receiving user commands and/or for monitoring environmental conditions. Transparent displays can display graphical user interfaces to, e.g., control window functions. Windows, as described herein, offer an alternative display to conventional projectors, TVs, and monitors. Windows may also be configured to receive, transmit, or block wireless communications from passing through the window. A window control system may share computational resources between controllers (e.g., at different windows).
    Type: Application
    Filed: November 17, 2020
    Publication date: May 6, 2021
    Inventors: Nitesh Trikha, Stephen Clark Brown, Dhairya Shrivastava, Robert T. Rozbicki
  • Patent number: 10996533
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically-insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically-insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: May 4, 2021
    Assignee: View, Inc.
    Inventors: Anshu A. Pradhan, Robert T. Rozbicki
  • Patent number: 10989977
    Abstract: Onboard EC window controllers are described. The controllers are configured in close proximity to the EC window, for example, within the IGU. The controller may be part of a window assembly, which includes an IGU having one or more EC panes, and thus does not have to be matched with the EC window, and installed, in the field. The window controllers described herein have a number of advantages because they are matched to the IGU containing one or more EC devices and their proximity to the EC panes of the window overcomes a number of problems associated with conventional controller configurations.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: April 27, 2021
    Assignee: View, Inc.
    Inventors: Dhairya Shrivastava, Anshu A. Pradhan, Stephen Clark Brown, David Walter Groechel, Robert T. Rozbicki
  • Publication number: 20210103195
    Abstract: Methods are provided for fabricating electrochromic devices that mitigate formation of short circuits under a top bus bar without predetermining where top bus bars will be applied on the device. Devices fabricated using such methods may be deactivated under the top bus bar, or may include active material under the top bus bar. Methods of fabricating devices with active material under a top bus bar include depositing a modified top bus bar, fabricating self-healing layers in the electrochromic device, and modifying a top transparent conductive layer of the device prior to applying bus bars.
    Type: Application
    Filed: December 15, 2020
    Publication date: April 8, 2021
    Inventors: Sridhar K. Kailasam, Dhairya Shrivastava, Zhiwei Cai, Robert T. Rozbicki, Dane Gillaspie, Todd Martin, Anshu A. Pradhan, Ronald M. Parker
  • Patent number: 10969645
    Abstract: Electrochromic devices comprise first and second conductors, wherein at least one of the first and second conductors is a multi-layered conductor. The electrochromic devices further comprise an electrochromic stack between the conductors adjacent to a substrate. The at least one multi-layered conductor comprises a metal layer sandwiched between a first non-metal layer and a second non-metal layer such that the metal layer does not contact the electrochromic stack.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: April 6, 2021
    Assignee: View, Inc.
    Inventors: Robert T. Rozbicki, Anshu A. Pradhan, Sridhar Karthik Kailasam, Robin Friedman, Gordon E. Jack, Dane Thomas Gillaspie
  • Patent number: 10969644
    Abstract: Embodiments described include bus bars for electrochromic or other optical state changing devices. The bus bars are configured to color match and/or provide minimal optical contrast with their surrounding environment in the optical device. Such bus bars may be transparent bus bars.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: April 6, 2021
    Assignee: View, Inc.
    Inventors: Robert T. Rozbicki, Gordon E. Jack, Disha Mehtani