Patents by Inventor Robert T. Sawchuk
Robert T. Sawchuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12268885Abstract: An implantable medical device system delivers a pacing pulse to a patient's heart and starts a first pacing interval corresponding to a pacing rate in response to the delivered pacing pulse. The system charges a holding capacitor to a pacing voltage amplitude during the first pacing interval. The system detects an increased intrinsic heart rate that is at least a threshold rate faster than the current pacing rate from a cardiac electrical signal received by a sensing circuit of the implantable medical device. The system starts a second pacing interval in response to an intrinsic cardiac event sensed from the cardiac electrical signal and withholds charging of the holding capacitor for at least a portion of the second pacing interval in response to detecting the increased intrinsic heart rate.Type: GrantFiled: April 17, 2023Date of Patent: April 8, 2025Assignee: Medtronic, Inc.Inventor: Robert T. Sawchuk
-
Publication number: 20240424314Abstract: An implantable cardioverter defibrillator (ICD) receives a cardiac electrical signal by a sensing circuit while operating in a sensing without pacing mode and detects asystole based on the cardiac electrical signal. The ICD determines, in response to detecting the asystole, if asystole backup pacing is enabled, and automatically switches to a temporary pacing mode in response to the asystole backup pacing being enabled. Other examples of detecting asystole and providing a response to detecting asystole by the ICD are described herein.Type: ApplicationFiled: September 5, 2024Publication date: December 26, 2024Inventors: Yanina GRINBERG, Robert T. SAWCHUK, Amy E. THOMPSON-NAUMAN, Douglas A. PETERSON, Paul R. SOLHEIM, Joel R. LAUER
-
Patent number: 12157009Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.Type: GrantFiled: December 5, 2022Date of Patent: December 3, 2024Assignee: Medtronic, Inc.Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
-
Publication number: 20240325767Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.Type: ApplicationFiled: June 7, 2024Publication date: October 3, 2024Inventors: Yanina GRINBERG, Paul D. BAKER, Lonny V. CABELKA, Craig W. DORMA, Timothy A. EBELING, Michael W. HEINKS, James VANDER HEYDEN, Joseph IPPOLITO, Joel R. LAUER, Robert T. SAWCHUK, Brian W. SCHOUSEK
-
Patent number: 12097377Abstract: An implantable cardioverter defibrillator (ICD) receives a cardiac electrical signal by a sensing circuit while operating in a sensing without pacing mode and detects asystole based on the cardiac electrical signal. The ICD determines, in response to detecting the asystole, if asystole backup pacing is enabled, and automatically switches to a temporary pacing mode in response to the asystole backup pacing being enabled. Other examples of detecting asystole and providing a response to detecting asystole by the ICD are described herein.Type: GrantFiled: March 9, 2021Date of Patent: September 24, 2024Assignee: Medtronic, Inc.Inventors: Yanina Grinberg, Robert T. Sawchuk, Amy E. Thompson-Nauman, Douglas A. Peterson, Paul R. Solheim, Joel R. Lauer
-
Patent number: 12005263Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.Type: GrantFiled: October 27, 2022Date of Patent: June 11, 2024Assignee: Medtronic, Inc.Inventors: Yanina Grinberg, Paul D. Baker, Lonny V. Cabelka, Craig W. Dorma, Timothy A. Ebeling, Michael W. Heinks, James Vander Heyden, Joseph Ippolito, Joel R. Lauer, Robert T. Sawchuk, Brian W. Schousek
-
Publication number: 20240139532Abstract: An implantable medical device has a therapy module configured to generate a composite pacing pulse including a series of at least two individual pulses. The therapy module is configured to generate the composite pacing pulse by generating a first pulse of the at least two individual pulses by selectively coupling a first portion of a plurality of capacitors to an output signal line and generate a second pulse of the at least two individual pulses by selectively coupling a second portion of the plurality of capacitors to the output signal line.Type: ApplicationFiled: January 5, 2024Publication date: May 2, 2024Inventors: David A. ANDERSON, Mark T. MARSHALL, Vladimir P. NIKOLSKI, Robert T. SAWCHUK, Amy E. THOMPSON-NAUMAN, John D. WAHLSTRAND, Gregory A. YOUNKER
-
Publication number: 20240032846Abstract: A medical device is configured to receive sensed cardiac event data including a value of a feature determined from each one of a plurality of cardiac events sensed from a cardiac signal according to a first setting of a sensing control parameter. The medical device is configured to classify each value of the feature of each one of the sensed cardiac events as either a predicted sensed event or a predicted undersensed event according to a second setting of the sensing control parameter that is less sensitive to sensing cardiac events than the first setting. The medical device is configured to determine a predicted sensed event interval between each consecutive pair of the predicted sensed events and predict that an arrhythmia is detected or not detected based on the predicted sensed event intervals.Type: ApplicationFiled: October 8, 2023Publication date: February 1, 2024Inventor: Robert T. SAWCHUK
-
Patent number: 11883677Abstract: An implantable medical device has a therapy module configured to generate a composite pacing pulse including a series of at least two individual pulses. The therapy module is configured to generate the composite pacing pulse by generating a first pulse of the at least two individual pulses by selectively coupling a first portion of a plurality of capacitors to an output signal line and generate a second pulse of the at least two individual pulses by selectively coupling a second portion of the plurality of capacitors to the output signal line.Type: GrantFiled: July 7, 2022Date of Patent: January 30, 2024Assignee: Medtronic, Inc.Inventors: David A Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
-
Patent number: 11779255Abstract: A medical device is configured to receive sensed cardiac event data including a value of a feature determined from each one of a plurality of cardiac events sensed from a cardiac signal according to a first setting of a sensing control parameter. The medical device is configured to classify each value of the feature of each one of the sensed cardiac events as either a predicted sensed event or a predicted undersensed event according to a second setting of the sensing control parameter that is less sensitive to sensing cardiac events than the first setting. The medical device is configured to determine a predicted sensed event interval between each consecutive pair of the predicted sensed events and predict that an arrhythmia is detected or not detected based on the predicted sensed event intervals.Type: GrantFiled: August 2, 2021Date of Patent: October 10, 2023Assignee: Medtronic, Inc.Inventor: Robert T. Sawchuk
-
Publication number: 20230248981Abstract: An implantable medical device system delivers a pacing pulse to a patient's heart and starts a first pacing interval corresponding to a pacing rate in response to the delivered pacing pulse. The system charges a holding capacitor to a pacing voltage amplitude during the first pacing interval. The system detects an increased intrinsic heart rate that is at least a threshold rate faster than the current pacing rate from a cardiac electrical signal received by a sensing circuit of the implantable medical device. The system starts a second pacing interval in response to an intrinsic cardiac event sensed from the cardiac electrical signal and withholds charging of the holding capacitor for at least a portion of the second pacing interval in response to detecting the increased intrinsic heart rate.Type: ApplicationFiled: April 17, 2023Publication date: August 10, 2023Inventor: Robert T. Sawchuk
-
Patent number: 11638828Abstract: An implantable medical device system delivers a pacing pulse to a patient's heart and starts a first pacing interval corresponding to a pacing rate in response to the delivered pacing pulse. The system charges a holding capacitor to a pacing voltage amplitude during the first pacing interval. The system detects an increased intrinsic heart rate that is at least a threshold rate faster than the current pacing rate from a cardiac electrical signal received by a sensing circuit of the implantable medical device. The system starts a second pacing interval in response to an intrinsic cardiac event sensed from the cardiac electrical signal and withholds charging of the holding capacitor for at least a portion of the second pacing interval in response to detecting the increased intrinsic heart rate.Type: GrantFiled: August 24, 2020Date of Patent: May 2, 2023Assignee: Medtronic, Inc.Inventor: Robert T. Sawchuk
-
Publication number: 20230096230Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.Type: ApplicationFiled: December 5, 2022Publication date: March 30, 2023Inventors: David A. ANDERSON, Mark T. Marshall, Vladimir P. NIKOLSKI, Robert T. SAWCHUK, Amy E. THOMPSON-NAUMAN, John D. WAHLSTRAND, Gregory A. YOUNKER
-
Publication number: 20230075919Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.Type: ApplicationFiled: October 27, 2022Publication date: March 9, 2023Inventors: Yanina GRINBERG, Paul D. BAKER, Lonny V. CABELKA, Craig W. DORMA, Timothy A. EBELING, Michael W. HEINKS, James VANDER HEYDEN, Joseph IPPOLITO, Joel R. LAUER, Robert T. SAWCHUK, Brian W. SCHOUSEK
-
Patent number: 11524166Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a low voltage therapy module and a high voltage therapy module is configured to select, by a control module of the ICD, a pacing output configuration from at least a low-voltage pacing output configuration of the low voltage therapy module and a high-voltage pacing output configuration of the high voltage therapy module. The high voltage therapy module includes a high voltage capacitor having a first capacitance and the low voltage therapy module includes a plurality of low voltage capacitors each having up to a second capacitance that is less than the first capacitance. The ICD control module controls a respective one of the low voltage therapy module or the high voltage therapy module to deliver extra-cardiovascular pacing pulses in the selected pacing output configuration via extra-cardiovascular electrodes coupled to the ICD.Type: GrantFiled: February 10, 2020Date of Patent: December 13, 2022Assignee: Medtronic, Inc.Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
-
Publication number: 20220339455Abstract: An implantable medical device has a therapy module configured to generate a composite pacing pulse including a series of at least two individual pulses. The therapy module is configured to generate the composite pacing pulse by generating a first pulse of the at least two individual pulses by selectively coupling a first portion of a plurality of capacitors to an output signal line and generate a second pulse of the at least two individual pulses by selectively coupling a second portion of the plurality of capacitors to the output signal line.Type: ApplicationFiled: July 7, 2022Publication date: October 27, 2022Inventors: David A. ANDERSON, Mark T. MARSHALL, Vladimir P. NIKOLSKI, Robert T. SAWCHUK, Amy E. THOMPSON-NAUMAN, John D. WAHLSTRAND, Gregory A. YOUNKER
-
Publication number: 20220314003Abstract: A medical device is configured to deliver a series of electrical stimulation pulses including opposing polarity pulses. The medical device delivers a charge balancing pulse by modifying every nth pulse of the electrical stimulation pulses to reduce a net charge delivered over the series of electrical stimulation pulses. In some examples, the medical device may be an implantable medical device that is coupled to an extra-cardiovascular lead for delivering the cardiac pacing pulses.Type: ApplicationFiled: June 14, 2022Publication date: October 6, 2022Inventors: Eric D. CORNDORF, Robert T. SAWCHUK
-
Patent number: 11406838Abstract: An implantable medical device is configured to control a therapy module to couple a capacitor array comprising a plurality of capacitors to a plurality of extra-cardiovascular electrodes and control the therapy module to deliver a composite pacing pulse to a patient's heart via the plurality of extra-cardiovascular electrodes by sequentially discharging at least a portion of the plurality capacitors to produce a series of at least two individual pulses that define the composite pacing pulse.Type: GrantFiled: October 21, 2019Date of Patent: August 9, 2022Assignee: Medtronic, Inc.Inventors: David A. Anderson, Mark T. Marshall, Vladimir P. Nikolski, Robert T. Sawchuk, Amy E. Thompson-Nauman, John D. Wahlstrand, Gregory A. Younker
-
Patent number: 11369795Abstract: A medical device is configured to deliver a series of electrical stimulation pulses including opposing polarity pulses. The medical device delivers a charge balancing pulse by modifying every nth pulse of the electrical stimulation pulses to reduce a net charge delivered over the series of electrical stimulation pulses. In some examples, the medical device may be an implantable medical device that is coupled to an extra-cardiovascular lead for delivering the cardiac pacing pulses.Type: GrantFiled: April 27, 2018Date of Patent: June 28, 2022Assignee: Medtronic, Inc.Inventors: Eric D. Corndorf, Robert T. Sawchuk
-
Patent number: 11318321Abstract: Techniques are disclosed for determining, by an extracardiovascular implantable cardioverter defibrillator (ICD) implanted in a patient, whether one or more test therapy signals generated by another medical device implanted in the patient is detected. In response to detecting the one or more test therapy signals, the extracardiovascular ICD provides an indication that the extracardiovascular ICD has detected the one or more test therapy signals. In some examples, the indication is an audible tone provided to a clinician. In some examples, the other medical device is an intracardiac cardiac pacing device, and the one or more test therapy signals comprises a plurality of anti-tachycardia pacing (ATP) pulses.Type: GrantFiled: May 10, 2019Date of Patent: May 3, 2022Assignee: Medtronic, Inc.Inventor: Robert T. Sawchuk