Patents by Inventor Robert T. Short

Robert T. Short has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11831373
    Abstract: Methods, systems, and devices for channelizing and beamforming a wideband waveform are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms that are beamformed on a per-channel basis during generation of the wideband waveforms. A transmitter may separate a first wideband signal into segments, with each segment bandwidth corresponding to a channel of the system bandwidth, and may map the segments to channels. The segments may be replicated to generate multiple copies of each segment. The transmitter may beamform and combine the copies of the segments to generate multiple wideband waveforms, and transmit each wideband waveform using a different antenna. A receiver may receive multiple wideband waveforms using multiple antennas and may separate each wideband waveform into segments, then beamform and de-map the segments. The techniques may be used to transmit and receive beamformed wideband waveforms over tactical data links.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: November 28, 2023
    Assignee: ViaSat, Inc.
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Patent number: 11736128
    Abstract: Methods, systems, and devices for channelizing a wideband waveform for transmission on a spectral band comprising unavailable channel segments are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms when channels of a system bandwidth are unavailable for transmission. A transmitter may separate a first wideband signal into segments, with each segment a bandwidth corresponding to a channel of the system bandwidth, and may map the segments to the available channels. The transmitter may combine the mapped segments into a second wideband waveform and transmit the second wideband waveform using the available channels. A receiver may receive a first wideband signal waveform and may separate the first wideband signal waveform into segments, de-map the segments and combine the de-mapped segments into a second wideband waveform for demodulation. The techniques may be used to transmit and receive wideband waveforms over tactical data links.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: August 22, 2023
    Assignee: ViaSat, Inc.
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Publication number: 20210409083
    Abstract: Methods, systems, and devices for channelizing and beamforming a wideband waveform are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms that are beamformed on a per-channel basis during generation of the wideband waveforms. A transmitter may separate a first wideband signal into segments, with each segment bandwidth corresponding to a channel of the system bandwidth, and may map the segments to channels. The segments may be replicated to generate multiple copies of each segment. The transmitter may beamform and combine the copies of the segments to generate multiple wideband waveforms, and transmit each wideband waveform using a different antenna. A receiver may receive multiple wideband waveforms using multiple antennas and may separate each wideband waveform into segments, then beamform and de-map the segments. The techniques may be used to transmit and receive beamformed wideband waveforms over tactical data links.
    Type: Application
    Filed: July 2, 2021
    Publication date: December 30, 2021
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Publication number: 20210258026
    Abstract: Methods, systems, and devices for channelizing a wideband waveform for transmission on a spectral band comprising unavailable channel segments are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms when channels of a system bandwidth are unavailable for transmission. A transmitter may separate a first wideband signal into segments, with each segment a bandwidth corresponding to a channel of the system bandwidth, and may map the segments to the available channels. The transmitter may combine the mapped segments into a second wideband waveform and transmit the second wideband waveform using the available channels. A receiver may receive a first wideband signal waveform and may separate the first wideband signal waveform into segments, de-map the segments and combine the de-mapped segments into a second wideband waveform for demodulation. The techniques may be used to transmit and receive wideband waveforms over tactical data links.
    Type: Application
    Filed: February 25, 2021
    Publication date: August 19, 2021
    Applicant: VIASAT, INC.
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Patent number: 11082101
    Abstract: Methods, systems, and devices for channelizing and beamforming a wideband waveform are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms that are beamformed on a per-channel basis during generation of the wideband waveforms. A transmitter may separate a first wideband signal into segments, with each segment bandwidth corresponding to a channel of the system bandwidth, and may map the segments to channels. The segments may be replicated to generate multiple copies of each segment. The transmitter may beamform and combine the copies of the segments to generate multiple wideband waveforms, and transmit each wideband waveform using a different antenna. A receiver may receive multiple wideband waveforms using multiple antennas and may separate each wideband waveform into segments, then beamform and de-map the segments. The techniques may be used to transmit and receive beamformed wideband waveforms over tactical data links.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: August 3, 2021
    Assignee: ViaSat, Inc.
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Publication number: 20210111774
    Abstract: Methods, systems, and devices for channelizing and beamforming a wideband waveform are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms that are beamformed on a per-channel basis during generation of the wideband waveforms. A transmitter may separate a first wideband signal into segments, with each segment bandwidth corresponding to a channel of the system bandwidth, and may map the segments to channels. The segments may be replicated to generate multiple copies of each segment. The transmitter may beamform and combine the copies of the segments to generate multiple wideband waveforms, and transmit each wideband waveform using a different antenna. A receiver may receive multiple wideband waveforms using multiple antennas and may separate each wideband waveform into segments, then beamform and de-map the segments. The techniques may be used to transmit and receive beamformed wideband waveforms over tactical data links.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Patent number: 10951247
    Abstract: Methods, systems, and devices for channelizing a wideband waveform for transmission on a spectral band comprising unavailable channel segments are described. Generally, the described techniques provide for transmitting and receiving wideband waveforms when channels of a system bandwidth are unavailable for transmission. A transmitter may separate a first wideband signal into segments, with each segment a bandwidth corresponding to a channel of the system bandwidth, and may map the segments to the available channels. The transmitter may combine the mapped segments into a second wideband waveform and transmit the second wideband waveform using the available channels. A receiver may receive a first wideband signal waveform and may separate the first wideband signal waveform into segments, de-map the segments and combine the de-mapped segments into a second wideband waveform for demodulation. The techniques may be used to transmit and receive wideband waveforms over tactical data links.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: March 16, 2021
    Assignee: VIASAT, INC.
    Inventors: Michael T. Kretsch, David C. Jacobs, David J. Trusheim, Robert T. Short
  • Patent number: 8920986
    Abstract: In one embodiment, the present invention relates generally to a system for providing a flow through battery cell and uses thereof. In one embodiment, the flow through battery cell includes an inlet for receiving a flow of water, a solid oxidizer coupled to the inlet for reacting with the flow of water to generate a catholyte, wherein the solid oxidizer comprises at least one of: an organic halamine, a succinimide or a hypochlorite salt, a galvanic module coupled to the solid oxidizer for receiving the catholyte and generating one or more effluents and an outlet for releasing the one or more effluents.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: December 30, 2014
    Assignee: SRI International
    Inventors: Andres M. Cardenas-Valencia, Lori Adornato, Robert T. Short, Larry C. Langebrake, Steven Crouch-Baker
  • Publication number: 20140308913
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Application
    Filed: October 14, 2013
    Publication date: October 16, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Patent number: 8467284
    Abstract: Systems and methods for a scalable architecture for radio device and systems are disclosed. This architecture employs a scalable bandwidth to deliver higher data rates and transmission ranges to devices that need them, while still delivering lower power solutions for devices which utilize a smaller bandwidth. These systems and methods may divide the available frequency spectrum into a set of fundamental sub-bands. Different devices may use various multiples of these sub-bands depending on their needs. Devices employing this architecture are also capable of interoperation with one another regardless of the bandwidth they utilize. A device may scan through each sub-band within which the device intends to operate, searching for a common beacon transmitted by other devices utilizing the sub-band. If a beacon is found the device can choose to interoperate with the other device or, alternatively, continue scanning the sub-bands until an unused sub-band is found.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: June 18, 2013
    Assignee: Alereon, Inc.
    Inventors: James L. Lansford, Robert T. Short
  • Publication number: 20130122846
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Application
    Filed: July 16, 2012
    Publication date: May 16, 2013
    Applicant: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, JR., Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Patent number: 8224281
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 17, 2012
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Patent number: 8188422
    Abstract: A die assembly for creating a ring electrode including a cylindrically-shaped die base, two die walls and a die top sized to fit inside a cylindrical die housing. The die base and die top having a series of concentric elevations used as impressions to form on two ends of the ring electrode. A method of fabricating an LTCC ring electrode using the die assembly is also provided.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 29, 2012
    Assignee: University of South Florida
    Inventors: Friso van Amerom, Ashish Chaudhary, Shekhar Bhansali, Robert T. Short, George Steimle
  • Publication number: 20110292970
    Abstract: Systems and methods for a scalable architecture for radio device and systems are disclosed. This architecture employs a scalable bandwidth to deliver higher data rates and transmission ranges to devices that need them, while still delivering lower power solutions for devices which utilize a smaller bandwidth. These systems and methods may divide the available frequency spectrum into a set of fundamental sub-bands. Different devices may use various multiples of these sub-bands depending on their needs. Devices employing this architecture are also capable of interoperation with one another regardless of the bandwidth they utilize. A device may scan through each sub-band within which the device intends to operate, searching for a common beacon transmitted by other devices utilizing the sub-band. If a beacon is found the device can choose to interoperate with the other device or, alternatively, continue scanning the sub-bands until an unused sub-band is found.
    Type: Application
    Filed: August 8, 2011
    Publication date: December 1, 2011
    Inventors: James L. Lansford, Robert T. Short
  • Patent number: 8018831
    Abstract: Systems and methods for a scalable architecture for radio device and systems are disclosed. This architecture employs a scalable bandwidth to deliver higher data rates and transmission ranges to devices that need them, while still delivering lower power solutions for devices which utilize a smaller bandwidth. These systems and methods may divide the available frequency spectrum into a set of fundamental sub-bands. Different devices may use various multiples of these sub-bands depending on their needs. Devices employing this architecture are also capable of interoperation with one another regardless of the bandwidth they utilize. A device may scan through each sub-band within which the device intends to operate, searching for a common beacon transmitted by other devices utilizing the sub-band. If a beacon is found the device can choose to interoperate with the other device or, alternatively, continue scanning the sub-bands until an unused sub-band is found.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: September 13, 2011
    Assignee: Alereon, Inc.
    Inventors: James L. Lansford, Robert T. Short
  • Publication number: 20110092177
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Patent number: 7894789
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: February 22, 2011
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young
  • Publication number: 20100216038
    Abstract: In one embodiment, the present invention relates generally to a method and system for providing a flow through battery cell and uses thereof. In one embodiment, the flow through battery cell includes an inlet for receiving a flow of water, a solid oxidizer coupled to said inlet for reacting with said flow of water to generate a catholyte, wherein the solid oxidizer comprises at least one of: an organic halamine, a succinimide or a hypochlorite salt, a galvanic module coupled to the solid oxidizer for receiving the catholyte and generating one or more effluents and an outlet for releasing the one or more effluents.
    Type: Application
    Filed: October 3, 2008
    Publication date: August 26, 2010
    Inventors: Andres M. Cardenas-Valencia, Lori Adornato, Robert T. Short, Larry C. Langebrake, Steven Crouch-Baker
  • Patent number: 7700911
    Abstract: A cylindrical ion trap (CIT) mass spectrometer constructed using a non-conductive substrate (LTCC) as the basis for the ring electrode. Photolithography and electroless plating were used to create well-defined conductive areas on the LTCC ring electrode. The inventive method allows for the precise control of establishing conductive areas on a non-conductive substrate through the steps of punching, lamination, firing, metallization and photolithography on the metallized layer.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: April 20, 2010
    Assignee: University of South Florida
    Inventors: Friso van Amerom, Ashish Chaudhary, Shekhar Bhansali, Robert T. Short, George Steimle
  • Publication number: 20090318107
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
    Type: Application
    Filed: April 7, 2009
    Publication date: December 24, 2009
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Michael J. Bultman, Robert W. Cook, Jonathan S. Jensen, Martin R. Johnson, Richard C. Looke, Charley D. Moses, JR., Gregory S. Rawlins, Michael W. Rawlins, Robert T. Short, Jamison L. Young