Patents by Inventor Robert Thomas Grotz
Robert Thomas Grotz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11253372Abstract: An expandable medical implant that includes a lower lifting plate, an upper lifting plat, a distal lifting block, a proximal lifting block, a rotational block, a lifting screw, and a locking nut, and related methods of use. Also, an expandable medical implant that includes a lower lifting plate having a proximal lower angled lifting portion, an upper lifting plate having a proximal upper angled lifting portion, a center fork block, a lifting lobe, a distal screw, and a proximal nut, and related methods of use.Type: GrantFiled: March 9, 2020Date of Patent: February 22, 2022Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20200281741Abstract: An expandable medical implant that includes a lower lifting plate, an upper lifting plat, a distal lifting block, a proximal lifting block, a rotational block, a lifting screw, and a locking nut, and related methods of use. Also, an expandable medical implant that includes a lower lifting plate having a proximal lower angled lifting portion, an upper lifting plate having a proximal upper angled lifting portion, a center fork block, a lifting lobe, a distal screw, and a proximal nut, and related methods of use.Type: ApplicationFiled: March 9, 2020Publication date: September 10, 2020Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: 10617527Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.Type: GrantFiled: April 17, 2019Date of Patent: April 14, 2020Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Patent number: 10500059Abstract: Methods of additive manufacturing expandable medical implants is provided along with methods of patient imaging for 3D printing expandable spine cages and topographically matching patient specific implants. Methods for stabilizing and correcting the alignment of the spine are also provided. Spine pathologies such as lordosis, kyphosis and scoliosis can be corrected with properly expanding spine cages such as those described. Independent control and adjustment of the proximal and distal ends of spine cages allows for treating multiple horizontally affected intervertebral spaces.Type: GrantFiled: January 17, 2019Date of Patent: December 10, 2019Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20190336298Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.Type: ApplicationFiled: April 17, 2019Publication date: November 7, 2019Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: 10307258Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.Type: GrantFiled: July 11, 2018Date of Patent: June 4, 2019Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Patent number: 10307257Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional compliant polymer arthroplasties that promote anatomic joint motion.Type: GrantFiled: November 9, 2017Date of Patent: June 4, 2019Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20190151112Abstract: Methods of additive manufacturing expandable medical implants is provided along with methods of patient imaging for 3D printing expandable spine cages and topographically matching patient specific implants. Methods for stabilizing and correcting the alignment of the spine are also provided. Spine pathologies such as lordosis, kyphosis and scoliosis can be corrected with properly expanding spine cages such as those described. Independent control and adjustment of the proximal and distal ends of spine cages allows for treating multiple horizontally affected intervertebral spaces.Type: ApplicationFiled: January 17, 2019Publication date: May 23, 2019Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: 10226356Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.Type: GrantFiled: September 5, 2018Date of Patent: March 12, 2019Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20190038423Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.Type: ApplicationFiled: July 11, 2018Publication date: February 7, 2019Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Publication number: 20190038416Abstract: The disclosure is directed to a resilient implant for implantation into human or animal joints to act as a cushion allowing for renewed joint motion. The implant endures variable joint forces and cyclic loads while reducing pain and improving function after injury or disease to repair, reconstruct, and regenerate joint integrity. The implant is deployed in a prepared debrided joint space, secured to at least one of the joint bones and expanded in the space, molding to surrounding structures with sufficient stability to avoid extrusion or dislocation. The implant has opposing walls that move in varied directions, and an inner space filled with suitable filler to accommodate motions which mimic or approximate normal joint motion. The implant pads the damaged joint surfaces, restores cushioning immediately and may be employed to restore cartilage to normal by delivering regenerative cells.Type: ApplicationFiled: September 16, 2018Publication date: February 7, 2019Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Publication number: 20190000641Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.Type: ApplicationFiled: September 5, 2018Publication date: January 3, 2019Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: 10092405Abstract: The disclosure is directed to a resilient implant for implantation into human or animal joints to act as a cushion allowing for renewed joint motion. The implant endures variable joint forces and cyclic loads while reducing pain and improving function after injury or disease to repair, reconstruct, and regenerate joint integrity. The implant is deployed in a prepared debrided joint space, secured to at least one of the joint bones and expanded in the space, molding to surrounding structures with sufficient stability to avoid extrusion or dislocation. The implant has opposing walls that move in varied directions, and an inner space filled with suitable filler to accommodate motions which mimic or approximate normal joint motion. The implant pads the damaged joint surfaces, restores cushioning immediately and may be employed to restore cartilage to normal by delivering regenerative cells.Type: GrantFiled: October 1, 2017Date of Patent: October 9, 2018Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Patent number: 10085846Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.Type: GrantFiled: April 9, 2018Date of Patent: October 2, 2018Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Patent number: 10045851Abstract: This disclosure is directed to restoring joints by deploying a resilient interpositional arthroplasty implant. Such implants function to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional inflatable or compliant polymer arthroplasties that promote anatomic joint motion.Type: GrantFiled: July 17, 2017Date of Patent: August 14, 2018Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20180221165Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a plug for causing expansion of the ends of the implant and therefore the bone engaging surfaces of the implant. The proximal plug member may be configured to move longitudinally such that the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the distal end of the cage body resiliently expands. The proximal and distal plug members are moved longitudinally independently from one another to allow for independent expansion and contraction of each of the proximal and distal ends of the cage body itself.Type: ApplicationFiled: April 9, 2018Publication date: August 9, 2018Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: 9999515Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.Type: GrantFiled: December 4, 2017Date of Patent: June 19, 2018Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz
-
Publication number: 20180153707Abstract: An expandable medical implant is provided with an implantable cage body. Methods for stabilizing and correcting the alignment of a spine with an expandable medical implant are provided. The proximal and distal ends of the cage body may each be provided with a tapered or cam portion. The implant may further include a proximal flexure, a distal flexure, a proximal plug member having a tapered portion configured to mate with the tapered portion of the proximal end of the cage body, and a distal plug member having a tapered portion configured to mate with the tapered portion of the distal end of the cage body. The proximal plug member may be configured to move longitudinally such that the distal flexure moves and the circumference of the proximal end of the cage body resiliently expands. The distal plug member may be configured to move longitudinally such that the proximal flexure moves and the circumference of the distal end of the cage body resiliently expands.Type: ApplicationFiled: December 4, 2017Publication date: June 7, 2018Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Publication number: 20180064544Abstract: This disclosure is directed to a resilient interpositional arthroplasty implant for application into a joint to pad cartilage defects, cushion, and replace or restore the articular surface, which may preserve joint integrity, reduce pain and improve function. The implant may endure variable joint compressive and shear forces and cyclic loads. The implant may repair, reconstruct, and regenerate joint anatomy, and thereby improve upon joint replacement alternatives. The walls of this invention may capture, distribute and hold living cells until aggregation and hyaline cartilage regrowth occurs. The implant may be deployed into debrided joint spaces, molding and conforming to surrounding structures with sufficient stability so as to enable immediate limb use after outpatient surgery. Appendages of the implant may repair or reconstruct tendons or ligaments, and menisci by interpositional compliant polymer arthroplasties that promote anatomic joint motion.Type: ApplicationFiled: November 9, 2017Publication date: March 8, 2018Applicant: iOrthopedics, Inc.Inventor: Robert Thomas Grotz
-
Patent number: D833613Type: GrantFiled: December 5, 2017Date of Patent: November 13, 2018Assignee: IORTHOPEDICS, INC.Inventor: Robert Thomas Grotz