Patents by Inventor Robert Thomas Held

Robert Thomas Held has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953686
    Abstract: An optical combiner in a display system of a mixed-reality head-mounted display (HMD) device comprises a lens of birefringent material and a ferroelectric liquid crystal (FLC) modulator that are adapted for use with a reflective waveguide to provide multiple different focal planes on which holograms of virtual-world objects (i.e., virtual images) are displayed. The birefringent lens has two orthogonal refractive indices, ordinary and extraordinary, depending on the polarization state of the incident light. Depending on the rotation of the polarization axis by the FLC modulator, the incoming light to the birefringent lens is focused either at a distance corresponding to the ordinary refractive index or the extraordinary refractive index. Virtual image light leaving the birefringent lens is in-coupled to a see-through reflective waveguide which is configured to form an exit pupil for the optical combiner to enable an HMD device user to view the virtual images from the source.
    Type: Grant
    Filed: September 26, 2021
    Date of Patent: April 9, 2024
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Robert Thomas Held, Bernard Charles Kress, Ashley Saulsbury, Dmitry Reshidko
  • Patent number: 11852824
    Abstract: Examples are disclosed that relate to using an array of hot mirrors in an eye-imaging system. One example provides a head-mounted display system, comprising a frame, an eye-imaging camera supported on the frame, a switchable hot mirror array comprising a plurality of switchable hot mirrors configured to direct light reflecting from an eye toward the eye-imaging camera, and a controller configured to control switching of a reflectivity of each of the plurality of switchable hot mirrors.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: December 26, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Benjamin Eliot Lundell, Joel Steven Kollin, Ishan Chatterjee, Maria Esther Pace, Mark Theodore Bolas, Bernard Charles Kress, Robert Thomas Held, Andreas Georgiou, Christopher Charles Aholt
  • Publication number: 20230368403
    Abstract: A system for facilitating display misalignment correction includes one or more processors and one or more hardware storage devices storing instructions that are executable by the one or more processors to configure the system to (i) determine one or more user activity attributes associated with user operation of a stereoscopic display system, (ii) based on the one or more user activity attributes, determine one or more correction application attributes, the one or more correction application attributes indicating a manner of applying one or more display misalignment correction operations to align presentation of content in the stereoscopic display system, and (iii) apply the one or more display misalignment correction operations to align the presentation of the content in the stereoscopic display system in accordance with the one or more correction application attributes, thereby effectuating display misalignment correction in a manner that mitigates user discomfort.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 16, 2023
    Inventors: Michaela PORUBANOVA, Erick Joseph PAUL, Robert Thomas HELD, Rayna DEMASTER-SMITH, Georg KLEIN
  • Publication number: 20230350212
    Abstract: Variable-focus lenses are arranged as a lens pair that work on opposite sides of a see-through optical combiner used in a mixed-reality head-mounted display (HMD) device. An eye-side variable-focus lens is configured as a negative lens over an eyebox of the see-through optical combiner to enable virtual-world objects to be set at a close distance. The negative lens is compensated by its conjugate using a real-world-side variable-focus lens configured as a positive lens to provide an unperturbed see-through experience. For non-presbyopes, the powers of the lenses are perfectly offset. For presbyopes, the lens powers is mismatched at times to provide simultaneous views of both virtual-world and real-world objects on the display in sharp focus. Responsively an eye tracker indicating that the user is engaged in close viewing, optical power is added to the real-world-side lens to push close real-world objects optically farther away into sharp focus for the presbyopic user.
    Type: Application
    Filed: July 11, 2023
    Publication date: November 2, 2023
    Inventors: Robert Thomas HELD, Bernard Charles KRESS, Ashley SAULSBURY, Dmitry RESHIDKO
  • Publication number: 20230314803
    Abstract: Examples are disclosed that relate to using an array of hot mirrors in an eye-imaging system. One example provides a head-mounted display system, comprising a frame, an eye-imaging camera supported on the frame, a switchable hot mirror array comprising a plurality of switchable hot mirrors configured to direct light reflecting from an eye toward the eye-imaging camera, and a controller configured to control switching of a reflectivity of each of the plurality of switchable hot mirrors.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 5, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Benjamin Eliot LUNDELL, Joel Steven KOLLIN, Ishan CHATTERJEE, Maria Esther PACE, Mark Theodore BOLAS, Bernard Charles KRESS, Robert Thomas HELD, Andreas GEORGIOU, Christopher Charles AHOLT
  • Patent number: 11768375
    Abstract: Variable-focus lenses are arranged as a lens pair that work on opposite sides of a see-through optical combiner used in a mixed-reality head-mounted display (HMD) device. An eye-side variable-focus lens is configured as a negative lens over an eyebox of the see-through optical combiner to enable virtual-world objects to be set at a close distance. The negative lens is compensated by its conjugate using a real-world-side variable-focus lens configured as a positive lens to provide for an unperturbed see-through experience. For non-presbyopes, the powers of the lenses are perfectly offset. For presbyopes, the lens powers may be mismatched at times to provide simultaneous views of both virtual-world and real-world objects on the display in sharp focus. Responsively an eye tracker indicating that the user is engaged in close viewing, optical power is added to the real-world-side lens to push close real-world objects optically farther away and into sharp focus for the presbyopic user.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: September 26, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Robert Thomas Held, Bernard Charles Kress, Ashley Saulsbury, Dmitry Reshidko
  • Publication number: 20230244077
    Abstract: One disclosed example provides a near-eye display device. The near-eye display device comprises an eye tracking system configured to determine a position of an eye of a user relative to the near-eye display device, and a waveguide including at least an input coupler and an output coupler, the output coupler including a plurality of zones, each zone activatable via a dynamically controllable output coupling element of the zone. The near-eye display device further comprises an image source configured to output image light to the input coupler, and a controller configured to selectively activate one or more zones of the output coupler based at least on the position of the eye.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Joel Steven KOLLIN, Ishan CHATTERJEE, Benjamin Eliot LUNDELL, Christopher Charles AHOLT, Maria Esther PACE, Andreas GEORGIOU, Robert Thomas HELD, Mark Theodore BOLAS
  • Publication number: 20230103091
    Abstract: An optical combiner in a display system of a mixed-reality head-mounted display (HMD) device comprises a lens of birefringent material and a ferroelectric liquid crystal (FLC) modulator that are adapted for use with a reflective waveguide to provide multiple different focal planes on which holograms of virtual-world objects (i.e., virtual images) are displayed. The birefringent lens has two orthogonal refractive indices, ordinary and extraordinary, depending on the polarization state of the incident light. Depending on the rotation of the polarization axis by the FLC modulator, the incoming light to the birefringent lens is focused either at a distance corresponding to the ordinary refractive index or the extraordinary refractive index. Virtual image light leaving the birefringent lens is in-coupled to a see-through reflective waveguide which is configured to form an exit pupil for the optical combiner to enable an HMD device user to view the virtual images from the source.
    Type: Application
    Filed: September 26, 2021
    Publication date: March 30, 2023
    Inventors: Robert Thomas HELD, Bernard Charles KRESS, Ashley SAULSBURY, Dmitry RESHIDKO
  • Publication number: 20230069895
    Abstract: Variable-focus lenses are arranged as a lens pair that work on opposite sides of a see-through optical combiner used in a mixed-reality head-mounted display (HMD) device. An eye-side variable-focus lens is configured as a negative lens over an eyebox of the see-through optical combiner to enable virtual-world objects to be set at a close distance. The negative lens is compensated by its conjugate using a real-world-side variable-focus lens configured as a positive lens to provide for an unperturbed see-through experience. For non-presbyopes, the powers of the lenses are perfectly offset. For presbyopes, the lens powers may be mismatched at times to provide simultaneous views of both virtual-world and real-world objects on the display in sharp focus. Responsively an eye tracker indicating that the user is engaged in close viewing, optical power is added to the real-world-side lens to push close real-world objects optically farther away and into sharp focus for the presbyopic user.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Inventors: Robert Thomas HELD, Bernard Charles KRESS, Ashley SAULSBURY, Dmitry RESHIDKO
  • Publication number: 20220413603
    Abstract: Examples are provided related to using multiplexed diffractive elements to improve eye tracking systems. One example provides a head-mounted display device comprising a see-through display system comprising a transparent combiner having an array of diffractive elements, and an eye tracking system comprising one or more light sources configured to direct light toward an eyebox of the see-through display system, and also comprising an eye tracking camera. The array of diffractive elements comprises a plurality of multiplexed diffractive elements configured to direct images of a respective plurality of different perspectives of the eyebox toward the eye tracking camera.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Robert Thomas HELD, Andreas GEORGIOU, Bernard Charles KRESS, Joel Steven KOLLIN
  • Patent number: 10890759
    Abstract: Systems and methods for controlling variable-focus functionality to reduce user discomfort in a mixed-reality system implement acts of obtaining a vergence depth of a gaze of a user, determining that the variable-focus lens for providing focus on virtual content viewed by the user is currently configured to provide focus at a depth that differs from the vergence depth, detecting that a triggering condition is present, and, in response to so detecting, selectively dampening an adjustment made to the variable-focus lens. In some implementations, the dampening causes the adjustment made to the variable-focus lens to reconfigure the variable-focus lens to provide focus at a depth that differs from the vergence depth.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 12, 2021
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Robert Thomas Held, Dan Osborn, Apriet Kenig, Christian Michael Sadak, Sophia Siyuan Sun
  • Patent number: 10706281
    Abstract: The disclosure herein describes controlling focal parameters of a head mounted display based on an estimated user age to account for increasing likelihood of presbyopia as user age increases. The head mounted display uses eye tracking sensors to collect ocular metric data associated with ocular features of a user's eye and a user age estimate is calculated based on analysis of the ocular metric data using a machine learning algorithm and an ocular metric data set. Further, a confidence value of the user age estimate is calculated based on the analysis of the ocular metric data. Then, focal parameters of the visual display of the head mounted display are controlled based on the user age estimate and confidence value. The described focal control method provides a seamless, automated way for a head mounted display system to adjust settings to provide a sharp, in-focus user experience for users of all ages.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: July 7, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Robert Thomas Held, Richard Zachary Robinson, Christopher Charles Aholt
  • Patent number: 10672103
    Abstract: A method for moving a virtual object includes displaying a virtual object and moving the virtual object based on a user input. Based on the user input attempting to move the virtual object in violation of an obstacle, displaying a collision indicator and an input indicator. The collision indicator is moved based on user input and movement constraints imposed by the obstacle. The input indicator is moved based on user input without movement constraints imposed by the obstacle.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: June 2, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Semih Energin, Sergio Paolantonio, David Evans, Eric Scott Rehmeyer, Robert Thomas Held, Maxime Ouellet, Anatolie Gavriliuc, Riccardo Giraldi, Andrew Frederick Muehlhausen
  • Patent number: 10630965
    Abstract: Examples are disclosed herein that relate to calibrating a user's eye for a stereoscopic display. One example provides, on a head-mounted display device including a see-through display, a method of calibrating a stereoscopic display for a user's eyes, the method including for a first eye, receiving an indication of alignment of a user-controlled object with a first eye reference object viewable via the head-mounted display device from a perspective of the first eye, determining a first ray intersecting the user-controlled object and the first eye reference object from the perspective of the first eye, and determining a position of the first eye based on the first ray. The method further includes repeating such steps for a second eye, determining a position of the second eye based on a second ray, and calibrating the stereoscopic display based on the position of the first eye and the position of the second eye.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: April 21, 2020
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Robert Thomas Held, Anatolie Gavriliuc, Riccardo Giraldi, Szymon P. Stachniak, Andrew Frederick Muehlhausen, Maxime Ouellet
  • Patent number: 10606609
    Abstract: A technique is described herein for presenting notifications associated with applications in a context-based manner. In one implementation, the technique maintains a data store that provides application annotation information that describes a plurality of anchors. For instance, the application annotation information for an illustrative anchor identifies: a location at which the anchor is virtually placed in an interactive world; an application associated with the anchor; and triggering information that describes a set of one or more triggering conditions to be satisfied to enable presentation of a notification pertaining to the application. In use, the technique presents the notification pertaining to the application in prescribed proximity to the anchor when it is determined that the user's engagement with the interactive world satisfies the anchor's set of triggering conditions. The triggering conditions can specify any combination of spatial factors, temporal factors, user co-presence factors, etc.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 31, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Semih Energin, Anatolie Gavriliuc, Robert Thomas Held, Maxime Ouellet, Riccardo Giraldi, Andrew Frederick Muehlhausen, Sergio Paolantonio
  • Publication number: 20200050824
    Abstract: The disclosure herein describes controlling focal parameters of a head mounted display based on an estimated user age to account for increasing likelihood of presbyopia as user age increases. The head mounted display uses eye tracking sensors to collect ocular metric data associated with ocular features of a user's eye and a user age estimate is calculated based on analysis of the ocular metric data using a machine learning algorithm and an ocular metric data set. Further, a confidence value of the user age estimate is calculated based on the analysis of the ocular metric data. Then, focal parameters of the visual display of the head mounted display are controlled based on the user age estimate and confidence value. The described focal control method provides a seamless, automated way for a head mounted display system to adjust settings to provide a sharp, in-focus user experience for users of all ages.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 13, 2020
    Inventors: Robert Thomas HELD, Richard Zachary ROBINSON, Christopher Charles AHOLT
  • Patent number: 10523912
    Abstract: Examples are disclosed that relate to devices and methods for displaying stereo visual content via a head-mounted display (HMD) device. In one example, a method comprises: establishing a default display distance from an origin in a virtual coordinate system; determining a modified display distance from the origin; determining that visual content comprises stereo visual content comprising a left eye image and a right eye image; based on determining that the visual content comprises stereo visual content, scaling the left eye image to a scaled left eye image and scaling the right eye image to a scaled right eye image using a scaling factor that is proportional to a difference between the modified display distance and the default display distance; and displaying the scaled left eye image and the scaled right eye image at the modified display distance.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: December 31, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Robert Thomas Held, Matthew Calbraith Crisler
  • Patent number: 10523930
    Abstract: Examples are disclosed herein related to reducing binocular rivalry in a near-eye display. One example provides a head-mounted display device having a near-eye display system configured to output a first-eye image to a first eyebox and a second-eye image to a second eyebox. The head-mounted display device is configured to receive an input of a three-dimensional (3D) location of a pupil of a first eye and a 3D location of a pupil of a second eye relative to the near-eye display system, based upon the 3D location of the pupil of the first eye and of the second eye, determine a location at which the pupil of the first eye begins to exit the first eyebox, and attenuate a luminance of the second-eye image at a location in the second-eye image based upon the location at which the pupil of the first eye begins to exit the first eyebox.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: December 31, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Matthew Calbraith Crisler, Robert Thomas Held, Bernard Charles Kress
  • Publication number: 20190279335
    Abstract: A method for moving a virtual object includes displaying a virtual object and moving the virtual object based on a user input. Based on the user input attempting to move the virtual object in violation of an obstacle, displaying a collision indicator and an input indicator. The collision indicator is moved based on user input and movement constraints imposed by the obstacle. The input indicator is moved based on user input without movement constraints imposed by the obstacle.
    Type: Application
    Filed: May 30, 2019
    Publication date: September 12, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Semih Energin, Sergio Paolantonio, David Evans, Eric Scott Rehmeyer, Robert Thomas Held, Maxime Ouellet, Anatolie Gavriliuc, Riccardo Giraldi, Andrew Frederick Muehlhausen
  • Publication number: 20190238818
    Abstract: Examples are disclosed that relate to devices and methods for displaying stereo visual content via a head-mounted display (HMD) device. In one example, a method comprises: establishing a default display distance from an origin in a virtual coordinate system; determining a modified display distance from the origin; determining that visual content comprises stereo visual content comprising a left eye image and a right eye image; based on determining that the visual content comprises stereo visual content, scaling the left eye image to a scaled left eye image and scaling the right eye image to a scaled right eye image using a scaling factor that is proportional to a difference between the modified display distance and the default display distance; and displaying the scaled left eye image and the scaled right eye image at the modified display distance.
    Type: Application
    Filed: February 1, 2018
    Publication date: August 1, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Robert Thomas HELD, Matthew Calbraith CRISLER