Patents by Inventor Robert Todd Constable

Robert Todd Constable has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10935615
    Abstract: A magnet assembly for magnetic resonance imaging is used to generate the basic magnetic field with a strength needed to produce the steady state or equilibrium position of nuclei or nuclear spins in magnetic resonance imaging. This magnet, or a part thereof, is vibrated or tilted or otherwise periodically moved so as to change its position and thereby generate a time-varying gradient field, which is used to enter the acquired magnetic resonance signals as raw data into k-space.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 2, 2021
    Assignees: Yale University, Siemens Healthcare GmbH
    Inventors: Markus Vester, Peter Speier, Stefan Popescu, Edgar Mueller, Robert Todd Constable, Gigi Galiana
  • Patent number: 10823793
    Abstract: A magnetic resonance scanner has a base, a C-arm mounted on the base, the C-arm having an inner surface curved in a C-shape, the C-shape defining a plane, a magnet mounted on the inner curved surface of the C-arm, the magnet generating a basic magnetic field for magnetic resonance imaging, and a drive mechanism mechanically connected to the magnet. The drive mechanism rotates the magnet around an axis that is orthogonal to the plane so as to selectively position the magnet in at least two magnet positions that are respectively above and beneath a patient, who is situated in the C-arm along or parallel to the axis.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 3, 2020
    Assignees: Siemens Healthcare GmbH, Yale University
    Inventors: Stefan Popescu, Markus Vester, Peter Speier, Edgar Müller, Robert Todd Constable, Gigi Galiana
  • Publication number: 20200309877
    Abstract: A magnet assembly for magnetic resonance imaging is used to generate the basic magnetic field with a strength needed to produce the steady state or equilibrium position of nuclei or nuclear spins in magnetic resonance imaging. This magnet, or a part thereof, is vibrated or tilted or otherwise periodically moved so as to change its position and thereby generate a time-varying gradient field, which is used to enter the acquired magnetic resonance signals as raw data into k-space.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicants: Siemens Healthcare GmbH, Yale University
    Inventors: Markus Vester, Peter Speier, Stefan Popescu, Edgar Mueller, Robert Todd Constable, Gigi Galiana
  • Publication number: 20200309878
    Abstract: A magnetic resonance scanner has a base, a C-arm mounted on said base, the C-arm having an inner surface curved in a C-shape, the C-shape defining a plane, a magnet mounted on said inner curved surface of said C-arm, the magnet generating a basic magnetic field for magnetic resonance imaging, and a drive mechanism mechanically connected to the magnet. The drive mechanism rotates the magnet around an axis that is orthogonal to said plane so as to selectively position said magnet in at least two magnet positions that are respectively above and beneath a patient, who is situated in the C-arm along or parallel to the axis.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicants: Siemens Healthcare GmbH, Yale University
    Inventors: Stefan Popescu, Markus Vester, Peter Speier, Edgar Müller, Robert Todd Constable, Gigi Galiana
  • Publication number: 20200253501
    Abstract: A system includes a magnetic resonance gradient accessory within an MRI system. The MRI system includes a magnet housing, a superconducting magnet generating a magnet field B0 to which a patient is subjected, shim coils, RF coils, receiver coils, magnetic gradient coils, and a patient table. The magnetic resonance gradient accessory creates local magnetic gradient fields critical to image generation and provides for diffusion encoding of a specific body region.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 13, 2020
    Inventors: Gigi Galiana Stadtler, Robert Todd Constable
  • Patent number: 10353039
    Abstract: Efficient encoding of signals in an MRI image is achieved through a combination of parallel receiver coils, and nonlinear gradient encoding that varies dynamically in such a manner as to impose a unique phase/frequency time varying signal on each pixel in the field of view. Any redundancies are designed such that they are easily resolved by the receiver coil sensitivity profiles. Since each voxel has an essentially identifiable complex temporal signal, spatial localization is easily achieved with only a single echo acquisition.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 16, 2019
    Assignee: Yale University
    Inventors: Robert Todd Constable, Gigi Galiana
  • Patent number: 10247802
    Abstract: Methods for correcting inhomogeneities of magnetic resonance (MR) images and for evaluating the performance of the inhomogeneity correction. The contribution of both transmit field and receiver sensitivity to signal inhomogeneity have been separately considered and quantified. As a result, their negative contributions can be fully corrected. The correction method can greatly enhance the accuracy and precision of MRI techniques and improve the detection sensitivity of pathophysiological changes. The performance of signal inhomogeneity correction methods has been evaluated and confirmed using phantom and in vivo human brain experiments. The present methodologies are readily applicable to correct signal intensity inhomogeneity artifacts produced in different imaging modalities, such as computer tomography, X-ray, ultrasound, and transmission electron microscopy.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 2, 2019
    Assignees: Ohio State Innovation Foundation, Yale University
    Inventors: Jinghua Wang, Zhong-lin Lu, Robert Todd Constable
  • Publication number: 20160291112
    Abstract: Efficient encoding of signals in an MRI image is achieved through a combination of parallel receiver coils, and nonlinear gradient encoding that varies dynamically in such a manner as to impose a unique phase/frequency time varying signal on each pixel in the field of view. Any redundancies are designed such that they are easily resolved by the receiver coil sensitivity profiles. Since each voxel has an essentially identifiable complex temporal signal, spatial localization is easily achieved with only a single echo acquisition.
    Type: Application
    Filed: November 20, 2014
    Publication date: October 6, 2016
    Inventors: Robert Todd CONSTABLE, Gigi GALIANA
  • Publication number: 20160018502
    Abstract: Methods for correcting inhomogeneities of magnetic resonance (MR) images and for evaluating the performance of the inhomogeneity correction. The contribution of both transmit field and receiver sensitivity to signal inhomogeneity have been separately considered and quantified. As a result, their negative contributions can be fully corrected. The correction method can greatly enhance the accuracy and precision of MRI techniques and improve the detection sensitivity of pathophysiological changes. The performance of signal inhomogeneity correction methods has been evaluated and confirmed using phantom and in vivo human brain experiments. The present methodologies are readily applicable to correct signal intensity inhomogeneity artifacts produced in different imaging modalities, such as computer tomography, X-ray, ultrasound, and transmission electron microscopy.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 21, 2016
    Inventors: Jinghua WANG, Zhong-lin LU, Robert Todd CONSTABLE
  • Patent number: 8710839
    Abstract: In MRI by excitation of nuclear spins and measurement of RF signals induced by these spins in the presence of spatially-varying encoding magnetic fields, signal localization is performed through recombination of measurements obtained in parallel by each coil in an encircling array of RF receiver coils. Through the use of magnetic gradient fields that vary both as first-order and second-order Z2 spherical harmonics with position, radially-symmetric magnetic encoding fields are created that are complementary to the spatial variation of the encircling receiver coils. The resultant hybrid encoding functions comprised of spatially-varying coil profiles and gradient fields permits unambiguous localization of signal contributed by spins. Using hybrid encoding functions in which the gradient shapes are thusly tailored to the encircling array of coil profiles, images are acquired in less time than is achievable from a conventional acquisition employing only first-order gradient fields with an encircling coil array.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: April 29, 2014
    Assignee: Yale University
    Inventors: Robert Todd Constable, Jason Stockmann, Lick-Kong Tam
  • Publication number: 20110241675
    Abstract: In MRI by excitation of nuclear spins and measurement of RF signals induced by these spins in the presence of spatially-varying encoding magnetic fields, signal localization is performed through recombination of measurements obtained in parallel by each coil in an encircling array of RF receiver coils. Through the use of magnetic gradient fields that vary both as first-order and second-order Z2 spherical harmonics with position, radially-symmetric magnetic encoding fields are created that are complementary to the spatial variation of the encircling receiver coils. The resultant hybrid encoding functions comprised of spatially-varying coil profiles and gradient fields permits unambiguous localization of signal contributed by spins. Using hybrid encoding functions in which the gradient shapes are thusly tailored to the encircling array of coil profiles, images are acquired in less time than is achievable from a conventional acquisition employing only first-order gradient fields with an encircling coil array.
    Type: Application
    Filed: December 14, 2009
    Publication date: October 6, 2011
    Inventors: Robert Todd Constable, Jason Stockmann, Lick-Kong Tam