Patents by Inventor Robert Van Tassel

Robert Van Tassel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9656086
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: May 23, 2017
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20170080235
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Application
    Filed: December 8, 2016
    Publication date: March 23, 2017
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20170035561
    Abstract: The present invention relates to devices and methods for improving the function of a defective heart valve, and particularly for reducing regurgitation through an atrioventricular heart valve—i.e., the mitral valve and the tricuspid valve. For a tricuspid repair, the device includes an anchor deployed in the tissue of the right ventricle, in an orifice opening to the right atrium, or anchored to the tricuspid valve. A flexible anchor rail connects to the anchor and a coaptation element on a catheter rides over the anchor rail. The catheter attaches to the proximal end of the coaptation element, and a locking mechanism fixes the position of the coaptation element relative to the anchor rail. Finally, there is a proximal anchoring feature to fix the proximal end of the coaptation catheter subcutaneously adjacent the subclavian vein. The coaptation element includes an inert covering and helps reduce regurgitation through contact with the valve leaflets.
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Applicant: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Robert Schwartz, Robert Van Tassel, Vivian Khalil, Erin M. Spinner, Neil S. Zimmerman, Alexander J. Siegel
  • Patent number: 9526900
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: December 27, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20160367785
    Abstract: A method of detecting and treating a microvascular obstruction is provided. In one embodiment, a catheter is provided for both detecting the microvascular obstruction and treating or removing the obstruction.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Applicant: OSPREY MEDICAL, INC.
    Inventors: Robert S. Schwartz, Robert A. Van Tassel
  • Patent number: 9474605
    Abstract: The present invention relates to devices and methods for improving the function of a defective heart valve, and particularly for reducing regurgitation through an atrioventricular heart valve—i.e., the mitral valve and the tricuspid valve. For a tricuspid repair, the device includes an anchor deployed in the tissue of the right ventricle, in an orifice opening to the right atrium, or anchored to the tricuspid valve. A flexible anchor rail connects to the anchor and a coaptation element on a catheter rides over the anchor rail. The catheter attaches to the proximal end of the coaptation element, and a locking mechanism fixes the position of the coaptation element relative to the anchor rail. Finally, there is a proximal anchoring feature to fix the proximal end of the coaptation catheter subcutaneously adjacent the subclavian vein. The coaptation element includes an inert covering and helps reduce regurgitation through contact with the valve leaflets.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: October 25, 2016
    Assignee: Edwards Lifesciences Corporation
    Inventors: Stanton J. Rowe, Robert Schwartz, Robert Van Tassel, Vivian Khalil, Erin Spinner, Neil Zimmerman, Alexander J. Siegel
  • Publication number: 20160287270
    Abstract: The present invention provides an aortic valvuloplasty catheter which, in one preferred embodiment, has a tapered distal balloon segment that anchors within the left ventricle outflow track of the patient's heart and a rounded proximal segment which conforms to the aortic sinuses forcing the valve leaflets open. In addition, this embodiment of the valvuloplasty catheter includes a fiber-based balloon membrane, a distal pigtail end hole catheter tip, and a catheter sheath.
    Type: Application
    Filed: June 15, 2016
    Publication date: October 6, 2016
    Applicant: InterValve, Inc.
    Inventors: Wesley Pedersen, Robert A. Van Tassel, Robert S. Schwartz, Gregory G. Brucker, Skott E. Greenhalgh
  • Patent number: 9433761
    Abstract: A method of detecting and treating a microvascular obstruction is provided. In one embodiment, a catheter is provided for both detecting the microvascular obstruction and treating or removing the obstruction.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 6, 2016
    Assignee: Osprey Medical, Inc.
    Inventors: Robert S. Schwartz, Robert A. Van Tassel
  • Publication number: 20160243368
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20160220824
    Abstract: A method that electrically stimulates a heart muscle to alter the ejection profile of the heart, to control the mechanical function of the heart and reduce the observed blood pressure of the patient. The therapy may be invoked by an implantable blood pressure sensor associated with a pacemaker like device. In some cases, where a measured pretreatment blood pressure exceeds a treatment threshold, a patient's heart may be stimulated with an electrical stimulus timed relative to the patient's cardiac ejection cycle. This is done to cause dyssynchrony between at least two cardiac chambers or within a cardiac chamber, which alters the patient's cardiac ejection profile from a pretreatment cardiac ejection profile. This has the effect of reducing the patient's blood pressure from the measured pretreatment blood pressure.
    Type: Application
    Filed: April 7, 2016
    Publication date: August 4, 2016
    Inventors: Robert S. Schwartz, Robert A. Van Tassel
  • Publication number: 20160206081
    Abstract: A method and apparatus for attaching tissue to bone in a shifted position without requiring surgical detachment of muscle or connective tissue joining the tissue layer to the bone layer. The skin layer is gently pulled in a non-surgical manner and a fastener of the invention is driven through the skin layer into the bone layer to effect a “skin tightening” procedure.
    Type: Application
    Filed: November 13, 2015
    Publication date: July 21, 2016
    Applicant: ZIFT MEDICAL, LLC
    Inventors: Robert S. Schwartz, Stanton J. Rowe, Robert A. Van Tassel, Ralph Schneider, Ming Wu, David John Blaeser, Philip Jon Haarstad, Eric J. Simso, Douglas Jay Krone, Brian Zelickson, Robert A. Ganz
  • Patent number: 9375555
    Abstract: The present invention provides an aortic valvuloplasty catheter which, in one preferred embodiment, has a tapered distal balloon segment that anchors within the left ventricle outflow track of the patient's heart and a rounded proximal segment which conforms to the aortic sinuses forcing the valve leaflets open. In addition, this embodiment of the valvuloplasty catheter includes a fiber-based balloon membrane, a distal pigtail end hole catheter tip, and a catheter sheath.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 28, 2016
    Assignee: InterValve, Inc.
    Inventors: Wesley Pedersen, Robert A. Van Tassel, Robert S. Schwartz, Gregory G. Brucker, Skott E. Greenhalgh
  • Patent number: 9370662
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: June 21, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 9333352
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: May 10, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Patent number: 9320903
    Abstract: A method that electrically stimulates a heart muscle to alter the ejection profile of the heart, to control the mechanical function of the heart and reduce the observed blood pressure of the patient. The therapy may be invoked by an implantable blood pressure sensor associated with a pacemaker like device. In some cases, where a measured pretreatment blood pressure exceeds a treatment threshold, a patient's heart may be stimulated with an electrical stimulus timed relative to the patient's cardiac ejection cycle. This is done to cause dyssynchrony between at least two cardiac chambers or within a cardiac chamber, which alters the patient's cardiac ejection profile from a pretreatment cardiac ejection profile. This has the effect of reducing the patient's blood pressure from the measured pretreatment blood pressure.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: April 26, 2016
    Assignee: BackBeat Medical, Inc.
    Inventors: Robert S. Schwartz, Robert A. Van Tassel
  • Publication number: 20160082234
    Abstract: An apparatus and method of use are disclosed for treating, preventing and terminating arrhythmias. In particular, the apparatus is implantable within or on various tissues and structures and is used to prevent or block conduction of aberrant impulses. A variety of methods of the present invention may be used to attack arrhythmias by short-circuiting impulses, inducing fibrosis, ablating tissue or inducing inflammation. In addition, the device and methods may also be used to treat aneurysms. The device may also be used to treat hypertension, and to function as a blood pressure regulator.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Applicant: Syntach AG
    Inventors: Robert S. Schwartz, Robert A. Van Tassel, David R. Holmes, JR.
  • Publication number: 20150360035
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20150335895
    Abstract: Systems and methods for reducing ventricle filling volume are disclosed. In some embodiments, a stimulation circuit may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated at a consistent rate to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, a stimulation circuit may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Application
    Filed: December 19, 2013
    Publication date: November 26, 2015
    Inventors: Yuval MIKA, Darren SHERMAN, Robert S. SCHWARTZ, Robert VAN TASSEL, Daniel BURKHOFF
  • Publication number: 20150258342
    Abstract: Systems and methods for controlling blood pressure by controlling atrial pressure and atrial stretch are disclosed. In some embodiments, a stimulation circuit may be configured to deliver a stimulation pulse to at least one cardiac chamber of a heart of a patient, and at least one controller may be configured to execute delivery of one or more stimulation patterns of stimulation pulses to the at least one cardiac chamber, wherein at least one of the stimulation pulses stimulates the heart such that an atrial pressure resulting from atrial contraction of an atrium overlaps in time a passive pressure build-up of the atrium, such that an atrial pressure of the atrium resulting from the stimulation is a combination of the atrial pressure resulting from atrial contraction and the passive pressure build-up and is higher than an atrial pressure of the atrium would be without the stimulation, and such that the blood pressure of the patient is reduced.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 17, 2015
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff
  • Publication number: 20150174410
    Abstract: Methods and devices for reducing ventricle filling volume are disclosed. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to reduce ventricle filling volume or even blood pressure. When the heart is stimulated in a consistent way to reduce blood pressure, the cardiovascular system may over time adapt to the stimulation and revert back to the higher blood pressure. In some embodiments, the stimulation pattern may be configured to be inconsistent such that the adaptation response of the heart is reduced or even prevented. In some embodiments, an electrical stimulator may be used to stimulate a patient's heart to cause at least a portion of an atrial contraction to occur while the atrioventricular valve is closed. Such an atrial contraction may deposit less blood into the corresponding ventricle than when the atrioventricular valve is opened throughout an atrial contraction.
    Type: Application
    Filed: March 10, 2015
    Publication date: June 25, 2015
    Inventors: Yuval Mika, Darren Sherman, Robert S. Schwartz, Robert A. Van Tassel, Daniel Burkhoff