Patents by Inventor Robert W. Baird

Robert W. Baird has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8264082
    Abstract: Electronic elements with very low resistance back-side coupling are provided by forming one or more narrow trenches or pipes, preferably dielectric lined, in front sides of substrates, filling the trenches or pipes with a conductor having a coefficient of expansion not too different from that of the substrate but of higher conductivity, forming an epitaxial SC layer over the front side of the substrate in Ohmic contact with the conductor the trenches or pipes, forming various semiconductor (SC) devices in the epi-layer, back grinding the substrate to expose bottoms of the conductor filled trenches or pipes, and providing a back-side conductor contacting the conductor in the trenches or pipes. For silicon SCs, tungsten is a suitable conductor for filling the trenches or pipes to minimize substrate stress. Series ON-resistance of the elements due to the substrate resistance is substantially reduced.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: September 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard de Frésart, Robert W. Baird
  • Patent number: 8198705
    Abstract: In accordance with a specific embodiment, a method of processing a semiconductor substrate is disclosed whereby the substrate is thinned, and the dice formed on the substrate are singulated by a common process. Trench regions are formed on a backside of the substrate. An isotropic etch of the backside results in a thinning of the substrate while maintaining the depth of the trenches, thereby facilitating singulation of the die.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 12, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David P. Mancini, Young Sir Chung, William J. Dauksher, Donald F. Weston, Steven R. Young, Robert W. Baird
  • Publication number: 20110291278
    Abstract: Electronic elements with very low resistance back-side coupling are provided by forming one or more narrow trenches or pipes, preferably dielectric lined, in front sides of substrates, filling the trenches or pipes with a conductor having a coefficient of expansion not too different from that of the substrate but of higher conductivity, forming an epitaxial SC layer over the front side of the substrate in Ohmic contact with the conductor the trenches or pipes, forming various semiconductor (SC) devices in the epi-layer, back grinding the substrate to expose bottoms of the conductor filled trenches or pipes, and providing a back-side conductor contacting the conductor in the trenches or pipes. For silicon SCs, tungsten is a suitable conductor for filling the trenches or pipes to minimize substrate stress. Series ON-resistance of the elements due to the substrate resistance is substantially reduced.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 1, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Edouard de Frésart, Robert W. Baird
  • Patent number: 8021926
    Abstract: Electronic elements (40) with very low resistance back-side coupling are provided by forming one or more narrow trenches or pipes (411), preferably dielectric lined, in front sides (523) of substrates (52?), filling the trenches or pipes with a conductor (54) having a coefficient of expansion not too different from that of the substrate (52?) but of higher conductivity, forming an epitaxial SC layer (64) over the front side (523) of the substrate (52?) in Ohmic contact with the conductor (54) in the trenches or pipes (411), forming various semiconductor (SC) devices (42, 80) in the epi-layer (64), back grinding the substrate (52?) to expose bottoms (548) of the conductor filled trenches or pipes (41), and providing a back-side conductor (524) contacting the conductor (54) in the trenches or pipes (411). For silicon SCs, tungsten is a suitable conductor (54) for filling the trenches or pipes (411) to minimize substrate stress.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: September 20, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard de Frésart, Robert W. Baird
  • Publication number: 20110068475
    Abstract: Electronic elements (40) with very low resistance back-side coupling are provided by forming one or more narrow trenches or pipes (411), preferably dielectric lined, in front sides (523) of substrates (52?), filling the trenches or pipes with a conductor (54) having a coefficient of expansion not too different from that of the substrate (52?) but of higher conductivity, forming an epitaxial SC layer (64) over the front side (523) of the substrate (52?) in Ohmic contact with the conductor (54) in the trenches or pipes (411), forming various semiconductor (SC) devices (42, 80) in the epi-layer (64), back grinding the substrate (52?) to expose bottoms (548) of the conductor filled trenches or pipes (41), and providing a back-side conductor (524) contacting the conductor (54) in the trenches or pipes (411). For silicon SCs, tungsten is a suitable conductor (54) for filling the trenches or pipes (411) to minimize substrate stress.
    Type: Application
    Filed: September 22, 2009
    Publication date: March 24, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Edouard de Frésart, Robert W. Baird
  • Patent number: 7833858
    Abstract: Methods for forming semiconductor structures are provided for a semiconductor device employing a superjunction structure and overlying trench with embedded control gate. An embodiment comprises forming interleaved first and second spaced-apart regions of first and second semiconductor materials of different conductivity type and different mobilities so that the second semiconductor material has a higher mobility for the same carrier type than the first semiconductor material, and providing an overlying third semiconductor material in which a trench is formed with sidewalls having thereon a fourth semiconductor material that has a higher mobility than the third material, adapted to carry current between source regions, through the fourth semiconductor material in the trench and the second semiconductor material in the device drift space to the drain.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 16, 2010
    Assignee: Freesscale Semiconductor, Inc.
    Inventors: Edouard D. deFresart, Robert W. Baird
  • Patent number: 7834417
    Abstract: An antifuse element (102, 152, 252, 302, 352, 402, 602, 652, 702) includes a substrate material (101) having an active area (106) formed in an upper surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a gate oxide layer (110) disposed between the gate electrode (104) and the active area (106). The gate oxide layer (110) includes one of a gate oxide dip (128) or a gate oxide undercut (614). During operation a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the gate oxide layer (110) and a rupture of the gate oxide layer (110) in a rupture region (130). The rupture region (130) is defined by the oxide structure and the gate oxide dip (128) or the gate oxide undercut (614).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 16, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, Robert W. Baird, Gordon P. Lee, Jiang-Kai Zuo
  • Patent number: 7651918
    Abstract: Semiconductor structures (52-9, 52-11, 52-12) and methods (100-300) are provided for a semiconductor devices employing strained (70) and relaxed (66) semiconductors, The method comprises, forming (106, 208, 308) on a substrate (54, 56, 58) first (66-1) and second (66-2) regions of a first semiconductor material (66) of a first conductivity type and a first lattice constant spaced apart by a gap or trench (69), filling (108, 210, 308) the trench or gap (69) with a second semiconductor material (70) of a second, conductivity type and a second different lattice constant so that the second semiconductor material (70) is strained with respect to the first semiconductor material (66) and forming (110, 212, 312) device regions (80, 88, S, G, D) communicating with the first (66) and second (70) semiconductor materials and adapted to provide device current (87, 87?) through at least part of the strained second semiconductor material (70) in the trench (69).
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 26, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard D. de Frésart, Robert W. Baird
  • Publication number: 20090286372
    Abstract: Methods for forming semiconductor structures are provided for a semiconductor device employing a superjunction structure and overlying trench with embedded control gate. An embodiment comprises forming interleaved first and second spaced-apart regions of first and second semiconductor materials of different conductivity type and different mobilities so that the second semiconductor material has a higher mobility for the same carrier type than the first semiconductor material, and providing an overlying third semiconductor material in which a trench is formed with sidewalls having thereon a fourth semiconductor material that has a higher mobility than the third material, adapted to carry current between source regions, through the fourth semiconductor material in the trench and the second semiconductor material in the device drift space to the drain.
    Type: Application
    Filed: July 29, 2009
    Publication date: November 19, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Edouard D. de Frésart, Robert W. Baird
  • Patent number: 7602014
    Abstract: An embodiment of an MOS device includes a semiconductor substrate of a first conductivity type, a first region of the first conductivity type having a length Lacc and a net active dopant concentration of about Nfirst, a pair of spaced-apart body regions of a second opposite conductivity type and each having a length Lbody and a net active dopant concentration of about Nsecond, channel regions located in the spaced-apart body regions, source regions of the first conductivity type located in the spaced-apart body regions and separated from the first region by the channel regions, an insulated gate overlying the channel regions and the first region, and a drain region of the first conductivity type located beneath the first region. In an embodiment, (Lbody*Nsecond)=k1*(Lacc*Nfirst), where k1 has a value in the range of about 0.6?k1?1.4.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: October 13, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard D. deFresart, Robert W. Baird, Ganming Qin
  • Patent number: 7598517
    Abstract: Semiconductor structures and methods are provided for a semiconductor device (40) employing a superjunction structure (41) and overlying trench (91) with embedded control gate (48). The method comprises, forming (52-6, 52-9) interleaved first (70-1, 70-2, 70-3, 70-4, etc.) and second (74-1, 74-2, 74-3, etc.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: October 6, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard D. de Frésart, Robert W. Baird
  • Patent number: 7592230
    Abstract: Means and methods are provided for trench TMOS devices (41-10, 11, 12), comprising, providing a first semiconductor (53, 53?) of a first composition having an upper surface (541), with a body portion (54) proximate the upper surface (541), a drift portion (46, 83) spaced apart from the upper surface (541) and a trench (49, 49?) having sidewalls (493) extending from the upper surface (541) into the drift portion (46, 83). A second semiconductor (56) adapted to provide a higher mobility layer is applied on the trench sidewalls (493) where parts (78) of the body portion (54) are exposed. A dielectric (70) covers the higher mobility layer (56) and separates it from a control gate (72) in the trench (49, 49?). Source regions (68) formed in the body portion (54) proximate the upper surface (491) communicate with the higher mobility layer (56).
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: September 22, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Edouard D. de Frésart, Robert W. Baird
  • Publication number: 20090224325
    Abstract: An antifuse element (102, 152, 252, 302, 352, 402, 602, 652, 702) includes a substrate material (101) having an active area (106) formed in an upper surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a gate oxide layer (110) disposed between the gate electrode (104) and the active area (106). The gate oxide layer (110) includes one of a gate oxide dip (128) or a gate oxide undercut (614). During operation a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the gate oxide layer (110) and a rupture of the gate oxide layer (110) in a rupture region (130). The rupture region (130) is defined by the oxide structure and the gate oxide dip (128) or the gate oxide undercut (614).
    Type: Application
    Filed: March 27, 2009
    Publication date: September 10, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Won Gi Min, Robert W. Baird, Gordon P. Lee, Jiang-Kai Zuo
  • Patent number: 7553704
    Abstract: An antifuse element (102, 152, 252, 302, 352, 402, 602, 652, 702) and method of fabricating the antifuse element, including a substrate material (101) having an active area (106) formed in an upper surface, a gate electrode (104) having at least a portion positioned above the active area (106), and a gate oxide layer (110) disposed between the gate electrode (104) and the active area (106). The gate oxide layer (110) including the fabrication of one of a gate oxide dip (128) or a gate oxide undercut (614). During operation a voltage applied between the gate electrode (104) and the active area (106) creates a current path through the gate oxide layer (110) and a rupture of the gate oxide layer (110) in a rupture region (130). The rupture region (130) defined by the oxide structure and the gate oxide dip (128) or the gate oxide undercut (614).
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: June 30, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Won Gi Min, Robert W. Baird, Jiang-Kai Zuo, Gordon P. Lee
  • Patent number: 7547480
    Abstract: An integrated circuit device is provided which comprises a substrate, a conductive line configured to experience a pressure, and a magnetic tunnel junction (“MTJ”) core formed between the substrate and the current line. The conductive line is configured to move in response to the pressure, and carries a current which generates a magnetic field. The MTJ core has a resistance value which varies based on the magnetic field. The resistance of the MTJ core therefore varies with respect to changes in the pressure. The MTJ core is configured to produce an electrical output signal which varies as a function of the pressure.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: June 16, 2009
    Assignee: Everspin Technologies, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Bradley N. Engel
  • Patent number: 7541804
    Abstract: Methods and apparatus are provided for sensing physical parameters. The apparatus comprises a magnetic tunnel junction (MTJ) and a magnetic field source whose magnetic field overlaps the MTJ and whose proximity to the MTJ varies in response to an input to the sensor. The MTJ comprises first and second magnetic electrodes separated by a dielectric configured to permit significant tunneling conduction therebetween. The first magnetic electrode has its spin axis pinned and the second magnetic electrode has its spin axis free. The magnetic field source is oriented closer to the second magnetic electrode than the first magnetic electrode. The overall sensor dynamic range is extended by providing multiple electrically coupled sensors receiving the same input but with different individual response curves and desirably but not essentially formed on the same substrate.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: June 2, 2009
    Assignee: EverSpin Technologies, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Bradley N. Engel
  • Patent number: 7510883
    Abstract: Techniques of sensing a temperature of a heat source disposed in a substrate of an integrated circuit are provided. According to one exemplary method, a Magnetic Tunnel Junction (“MTJ”) temperature sensor is provided over the heat source. The MTJ temperature sensor comprises an MTJ core configured to output a current during operation thereof. The value of the current varies based on a resistance value of the particular MTJ core. The resistance value of the MTJ core varies as a function of the temperature of the heat source. A value of the current of the MTJ core can then be associated with a corresponding temperature of the heat source.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 31, 2009
    Assignee: EverSpin Technologies, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Mark A. Durlam
  • Patent number: 7511990
    Abstract: An integrated circuit device is provided which includes a heat source disposed in a substrate, and a Magnetic Tunnel Junction (“MTJ”) temperature sensor disposed over the heat source.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: March 31, 2009
    Assignee: EverSpin Technologies, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Mark A. Durlam
  • Patent number: 7507638
    Abstract: In accordance with a specific embodiment, a method of processing a semiconductor substrate is disclosed whereby the substrate is thinned, and the dice formed on the substrate are singulated by a common process. Trench regions are formed on a backside of the substrate. An isotropic etch of the backside results in a thinning of the substrate while maintaining the depth of the trenches, thereby facilitating singulation of the die.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 24, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David P. Mancini, Young Sir Chung, William J. Dauksher, Donald F. Weston, Steven R. Young, Robert W. Baird
  • Publication number: 20090008748
    Abstract: In accordance with a specific embodiment, a method of processing a semiconductor substrate is disclosed whereby the substrate is thinned, and the dice formed on the substrate are singulated by a common process. Trench regions are formed on a backside of the substrate. An isotropic etch of the backside results in a thinning of the substrate while maintaining the depth of the trenches, thereby facilitating singulation of the die.
    Type: Application
    Filed: September 16, 2008
    Publication date: January 8, 2009
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: David P. Mancini, Young Sir Chung, William J. Dauksher, Donald F. Watson, Steven R. Young, Robert W. Baird