Patents by Inventor Robert W. Boerstler

Robert W. Boerstler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6750153
    Abstract: A silicon element having macrocavities beneath its exterior surface is fabricated by electrochemical etching of a p-type silicon wafer. Etching at a high current density results in the formation of deep macrocavities overhung by a layer of crystalline silicon. The process works with both aqueous and non-aqueous electrolytes.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: June 15, 2004
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler
  • Publication number: 20020086551
    Abstract: A silicon element having macrocavities beneath its exterior surface is fabricated by electrochemical etching of a p-type silicon wafer. Etching at a high current density results in the formation of deep macrocavities overhung by a layer of crystalline silicon. The process works with both aqueous and non-aqueous electrolytes.
    Type: Application
    Filed: October 24, 2001
    Publication date: July 4, 2002
    Inventors: Charles P. Beetz, Robert W. Boerstler
  • Patent number: 6045677
    Abstract: A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: April 4, 2000
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5997713
    Abstract: An element with elongated, high aspect ratio channels such as microchannel plate is fabricated by electrochemical etching of a p-type silicon element in a electrolyte to form channels extending through the element. The electrolyte may be an aqueous electrolyte. For use as a microchannel plate, the; the silicon surfaces of the channels can be converted to insulating silicon dioxide, and a dynode material with a high electron emissivity can be deposited onto the insulating surfaces of the channels. New dynode materials are also disclosed.
    Type: Grant
    Filed: May 8, 1998
    Date of Patent: December 7, 1999
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., Robert W. Boerstler, John Steinbeck, David R. Winn
  • Patent number: 5989406
    Abstract: A magnetically shape-anisotropic material is made by providing a matrix with a plurality of elongated holes, and depositing first and second magnetic materials in each hole so as to form elongated particles including the first material adjacent one end and the second material adjacent the opposite end. One of the materials is a magnetically soft material having relatively low coercivity whereas the other material is a magnetically hard material having relatively high coercivity. The particles have dimensions transverse to their axes of elongation smaller than the magnetic domain size of the magnetically soft material.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: November 23, 1999
    Assignee: NanoSciences Corporation
    Inventors: Charles P. Beetz, Jr., John Steinbeck, Robert W. Boerstler, David R. Winn
  • Patent number: 5973444
    Abstract: Electron field emission devices (cold cathodes), vacuum microelectronic devices and field emission displays which incorporate cold cathodes and methods of making and using same. More specifically, cold cathode devices comprising electron emitting structures grown directly onto a substrate material. The invention also relates to patterned precursor substrates for use in fabricating field emission devices and methods of making same and also to catalytically growing other electronic structures, such as films, cones, cylinders, pyramids or the like, directly onto substrates.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: October 26, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Xueping Xu, Charles P. Beetz, George R. Brandes, Robert W. Boerstler, John W. Steinbeck
  • Patent number: 5872422
    Abstract: Electron field emission devices (cold cathodes), vacuum microelectronic devices and field emission displays which incorporate cold cathodes and methods of making and using same. More specifically, cold cathode devices comprising electron emitting structures grown directly onto a substrate material. The invention also relates to patterned precursor substrates for use in fabricating field emission devices and methods of making same and also to catalytically growing other electronic structures, such as films, cones, cylinders, pyramids or the like, directly onto substrates.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: February 16, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Xueping Xu, Charles P. Beetz, George R. Brandes, Robert W. Boerstler, John W. Steinbeck
  • Patent number: 5741435
    Abstract: A static magnetic memory includes a layer having a plurality of vertically oriented and shape-anisotropic elongated ferromagnetic particles. A plurality of writing conductors are adjacent the layer, and the conductors selectively apply magnetic fields to selected regions of the layer by directing electrical current to magnetize the particles in an up or down direction. Static reading means detect the direction of magnetization. The particles may include a soft magnet portion and a hard magnet portion. In another preferred embodiment, a material and a method of making same includes providing a matrix full of elongated holes, depositing a first magnetic material having a first coercivity into the holes, and then depositing a second magnetic material having a second coercivity into the holes to form a composite elongated particle in each hole.
    Type: Grant
    Filed: August 8, 1995
    Date of Patent: April 21, 1998
    Assignee: Nano Systems, Inc.
    Inventors: Charles P. Beetz, Jr., John Steinbeck, Robert W. Boerstler, David R. Winn