Patents by Inventor Robert W. Broach

Robert W. Broach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8992885
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1?xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 31, 2015
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller, Robert W. Broach, Wharton Sinkler
  • Patent number: 8603433
    Abstract: A zeolite X having (a) a Si/Al framework mole ratio in a range from 1.0 to 1.5; (b) a mean diameter not greater than 2.7 microns; and (c) a relative LTA intensity not greater than 0.35, as determined by x-ray diffraction (XRD). The relative LTA intensity is calculated as 100 times the quotient of a sample LTA XRD intensity divided by a reference XRD intensity of an LTA-type zeolite material. The intensities are summed for each LTA peak with Miller indices of (2 0 0), (4 2 0), and (6 2 2) at 7.27±0.16°, 16.29±0.34° and 24.27±0.50° 2?.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Patent number: 8603434
    Abstract: A zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Patent number: 8431764
    Abstract: A process for separating para-xylene from a mixture of C8 alkylaromatics comprises contacting the mixture of C8 alkylaromatics with a zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 30, 2013
    Assignee: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Publication number: 20120264994
    Abstract: A process for separating para-xylene from a mixture of C8 alkylaromatics comprises contacting the mixture of C8 alkylaromatics with a zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/AI framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
    Type: Application
    Filed: March 22, 2012
    Publication date: October 18, 2012
    Applicant: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Publication number: 20120264992
    Abstract: A zeolite X having (a) a Si/Al framework mole ratio in a range from 1.0 to 1.5; (b) a mean diameter not greater than 2.7 microns; and (c) a relative LTA intensity not greater than 0.35, as determined by x-ray diffraction (XRD). The relative LTA intensity is calculated as 100 times the quotient of a sample LTA XRD intensity divided by a reference XRD intensity of an LTA-type zeolite material. The intensities are summed for each LTA peak with Miller indices of (2 0 0), (4 2 0), and (6 2 2) at 7.27±0.16°, 16.29±0.34° and 24.27±0.50° 2?.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 18, 2012
    Applicant: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Publication number: 20120264993
    Abstract: A zeolitic binder-converted composition comprising (a) a zeolite X composition having at least a first zeolite X having a mean diameter not greater than 2.7 microns, and a second zeolite X, wherein the second zeolite X is obtained by converting a binder material to the second zeolite X and the binder material is in a range from 5 to 50 wt % of the zeolite X composition; and (b) an unconverted binder material content, after conversion to the second zeolite X is complete, in a range from 0 to 3 wt % of the zeolite X composition. The zeolite X composition has an average Si/Al framework mole ratio in a range from 1.0 to 1.5, and a relative LTA intensity not greater than 1.0, as determined by x-ray diffraction (XRD).
    Type: Application
    Filed: March 22, 2012
    Publication date: October 18, 2012
    Applicant: UOP LLC
    Inventors: Jack E. Hurst, Linda S. Cheng, Robert W. Broach
  • Patent number: 7977273
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 12, 2011
    Assignee: UOP LLC
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Patent number: 7973208
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Patent number: 7972989
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: July 5, 2011
    Assignee: UOP LLC
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Patent number: 7626064
    Abstract: This invention embodies a catalyst and a process for transalkylation of C7, C9, and C10 aromatics to obtain a high yield of xylenes. The catalyst comprises a novel UZM-14 catalytic material comprising globular aggregates of crystallites having a MOR framework type with a mean crystallite length parallel to the direction of the 12-ring channels of about 60 nm or less and a mesopore volume of at least about 0.10 cc/gram. The UZM-14 catalyst is particularly active and stable in a transalkylation process.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: December 1, 2009
    Assignee: UOP LLC
    Inventors: Edwin P. Boldingh, Michael G. Gatter, Susan C. Koster, David S. Lafyatis, Terrence E. Deak, Eric J. Baker, Robert W. Broach, Deng-Yang Jan, Jaime G. Moscoso
  • Publication number: 20090209406
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Application
    Filed: April 28, 2009
    Publication date: August 20, 2009
    Inventors: WHARTON SINKLER, ROBERT W. BROACH, NATASHA ERDMAN, THOMAS M. REYNOLDS, JOHN Q. CHEN, STEPHEN T. WILSON, PAUL T. BARGER
  • Publication number: 20090209411
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Application
    Filed: April 28, 2009
    Publication date: August 20, 2009
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Publication number: 20090209798
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Application
    Filed: April 28, 2009
    Publication date: August 20, 2009
    Inventors: WHARTON SINKLER, ROBERT W. BROACH, NATASHA ERDMAN, THOMAS M. REYNOLDS, JOHN Q. CHEN, STEPHEN T. WILSON, PAUL T. BARGER
  • Patent number: 7547812
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Publication number: 20070059236
    Abstract: A catalyst for the use in methanol to olefin conversion is identified, and a process for identifying the structure of the catalyst is presented, which is used to determine the quality of the catalyst for its selectivity for producing high light olefins yield.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 15, 2007
    Inventors: Robert W. Broach, Mary A. Vanek, Andrzej Z. Ringwelski, Stephen T. Wilson, Raelynn M. Miller, John Q. Chen
  • Patent number: 5830427
    Abstract: This invention relates to dimetal sulfide or selenide microporous crystalline compositions. These compositions have the empirical formulaR.sub.x (M.sup.1+.sub.y M.sup.2+.sub.z M.sub.4)A.sub.qwhere R is a cation such as tetramethylammonium ion, M.sup.1+ is a metal such as copper, silver, etc. M.sup.2+ is a metal such as zinc, cobalt, etc., M is germanium or tin and A is sulfur or selenium. The subscripts x, y, z and q represent the mole fractions of R, M.sup.1+, M.sup.2+ and A respectively. Finally, the three dimensional structure of said composition is characterized in that it contains M.sup.1+ --M.sup.1+ metal-metal bonds.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: November 3, 1998
    Assignee: UOP LLC
    Inventors: Robert L. Bedard, Robert W. Broach, Andrzej Malek, Geoffrey A. Ozin, David Young