Patents by Inventor Robert W. Carpick

Robert W. Carpick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220218513
    Abstract: The invention concerns personal wellness products comprising: a self-lubricating, tough hydrogel material, the hydrogel material optionally comprising a double interpenetrating network (D-IPN) matrix.
    Type: Application
    Filed: May 14, 2020
    Publication date: July 14, 2022
    Inventors: Robert W. CARPICK, Shu YANG, José A. BAUERMEISTER, Megan B. ELINSKI, Alexander I. BENNETT, Haihuan WANG, Wei-Liang CHEN, Christian POHLMANN, Willey Y LIN
  • Patent number: 10908069
    Abstract: Techniques for determining a characteristic of a sample using an atomic force microscope including a cantilever having a probe attached thereto, including positioning the sample within a cell and sliding the probe over a sliding zone of the sample within the cell. Lateral and vertical deformations of the cantilever are detected using the atomic force microscope as the probe is slid over the sliding zone. One or more characteristics are determined based on the detected lateral deformations of the cantilever.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 2, 2021
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Robert W. Carpick, Nitya Nand Gosvami
  • Patent number: 10768202
    Abstract: The presently disclosed subject matter provides systems and methods for generating nanostructures from tribological films. A probe tip can be immersed in a liquid mixture comprising a plurality of ink particles suspended in a medium. A substrate on which the tribological film is to be generated can also be immersed in the liquid mixture. A processor controlling movement of the probe tip can be configured to cause the probe tip to slide along the substrate in a shape of a desired pattern of the nanostructure with a contact force to cause one or more ink particles of the plurality of ink particles compressed underneath the probe tip to be transformed into a tribological film onto the substrate in the shape of the desired pattern of the nanostructure.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: September 8, 2020
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Harmandeep S. Khare, Nitya Nand Gosvami, Imene Lahouij
  • Patent number: 10535526
    Abstract: The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: January 14, 2020
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Frank Streller, Rahul Agarwal, Filippo Mangolini
  • Publication number: 20180210007
    Abstract: The presently disclosed subject matter provides systems and methods for generating nanostructures from tribological films. A probe tip can be immersed in a liquid mixture comprising a plurality of ink particles suspended in a medium. A substrate on which the tribological film is to be generated can also be immersed in the liquid mixture. A processor controlling movement of the probe tip can be configured to cause the probe tip to slide along the substrate in a shape of a desired pattern of the nanostructure with a contact force to cause one or more ink particles of the plurality of ink particles compressed underneath the probe tip to be transformed into a tribological film onto the substrate in the shape of the desired pattern of the nanostructure.
    Type: Application
    Filed: August 29, 2016
    Publication date: July 26, 2018
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Harmandeep S. Khare, Nitya Nand Gosvami, Imene Lahouij
  • Patent number: 10032635
    Abstract: The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: July 24, 2018
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Frank Streller, Rahul Agarwal, Filippo Mangolini
  • Publication number: 20180174851
    Abstract: The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 21, 2018
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Frank Streller, Rahul Agarwal, Filippo Mangolini
  • Publication number: 20170254740
    Abstract: Techniques for determining a characteristic of a sample using an atomic force microscope including a cantilever having a probe attached thereto, including positioning the sample within a cell and sliding the probe over a sliding zone of the sample within the cell. Lateral and vertical deformations of the cantilever are detected using the atomic force microscope as the probe is slid over the sliding zone. One or more characteristics are determined based on the detected lateral deformations of the cantilever.
    Type: Application
    Filed: May 17, 2017
    Publication date: September 7, 2017
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Robert W. Carpick, Nitya Nand Gosvami
  • Patent number: 9478244
    Abstract: A method of protecting a magnetic information storage medium is described. The method includes fabricating a film over a surface of the magnetic information storage medium. The film includes an amorphous, uniform, homogeneous solid solution of carbon, hydrogen, silicon, and oxygen. A magnetic storage medium with such a protective film is described.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: October 25, 2016
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Robert W. Carpick, Kumar Sridharan
  • Publication number: 20160233097
    Abstract: The disclosed subject matter provides thin films including a metal silicide and methods for forming such films. The disclosed subject matter can provide techniques for tailoring the electronic structure of metal thin films to produce desirable properties. In example embodiments, the metal silicide can comprise a platinum silicide, such as for example, PtSi, Pt2Si, or Pt3Si. For example, the disclosed subject matter provides methods which include identifying a desired phase of a metal silicide, providing a substrate, depositing at least two film layers on the substrate which include a first layer including amorphous silicon and a second layer including metal contacting the first layer, and annealing the two film layers to form a metal silicide. Methods can be at least one of a source-limited method and a kinetically-limited method. The film layers can be deposited on the substrate using techniques known in the art including, for example, sputter depositing.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 11, 2016
    Inventors: Robert W. Carpick, Frank Streller, Rahul Agarwal, Filippo Mangolini
  • Patent number: 8963659
    Abstract: The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: February 24, 2015
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, Anirudha V. Sumant, Derrick C. Mancini, Chris Gudeman, Suresh Sampath, John A. Carlilse, Robert W. Carpick, James Hwang
  • Publication number: 20150044510
    Abstract: A method of protecting a magnetic information storage medium is described. The method includes fabricating a film over a surface of the magnetic information storage medium. The film includes an amorphous, uniform, homogeneous solid solution of carbon, hydrogen, silicon, and oxygen. A magnetic storage medium with such a protective film is described.
    Type: Application
    Filed: September 15, 2014
    Publication date: February 12, 2015
    Inventors: Robert W. Carpick, Kumar Sridharan
  • Patent number: 8525185
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 3, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Publication number: 20120193685
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 2, 2012
    Applicant: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Publication number: 20110107473
    Abstract: Diamond-like carbon (DLC) coated nanoprobes and methods for fabricating such nanoprobes are provided. The nanoprobes provide hard, wear-resistant, low friction probes for use in such applications as atomic force microscopy, nanomachining, nanotribology, metrology and nanolithography. The diamond-like carbon coatings include a carbon implantation layer which increases adhesion of a deposited DLC layer to an underlying nanoprobe tip.
    Type: Application
    Filed: March 14, 2007
    Publication date: May 5, 2011
    Inventors: Robert W. Carpick, Kumar Sridharan, Anirudha V. Sumant
  • Publication number: 20070220959
    Abstract: A monolithically integrated 3-D membrane or diaphragm/tip (called 3-D tip) of substantially all UNCD having a tip with a radius of about less than 50 nm capable of measuring forces in all three dimensions or being used as single tips or in large arrays for imprint of data on memory media, fabrication of nanodots of different materials on different substrates and many other uses such as nanolithography production of nanodots of biomaterials on substrates, etc. A method of molding UNCD is disclosed including providing a substrate with a predetermined pattern and depositing an oxide layer prior to depositing a carbide-forming metallic seed layer, followed by seeding with diamond nano or micropowder in solvent suspension, or mechanically polishing with diamond powder, or any other seeding method, followed by UNCD film growth conforming to the predetermined pattern.
    Type: Application
    Filed: October 4, 2006
    Publication date: September 27, 2007
    Applicant: UChicago Argonne LLC
    Inventors: Anirudha V. Sumant, Robert W. Carpick, Orlando H. Auciello, John A. Carlisle