Patents by Inventor Robert W. Cook

Robert W. Cook has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937037
    Abstract: A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: March 19, 2024
    Assignee: Apple Inc.
    Inventors: Zachary C. Rich, Kurt R. Stiehl, Arun D. Chawan, Michael B. Howes, Jonathan S. Aase, Esge B. Andersen, Yacine Azmi, Jahan C. Minoo, David J. Shaw, Aarti Kumar, Augustin Prats, Robert D. Watson, Baptiste P. Paquier, Axel D. Berny, Benjamin W. Cook, Jerzy S. Guterman, Benjamin Adair Cousins
  • Publication number: 20230123781
    Abstract: In order to use zero trust network resources distributed across multiple gateways, an agent is deployed on an endpoint of an enterprise network. The agent maps requests for specific applications to corresponding gateways. The agent may also multiplex or otherwise aggregate communications among different network applications and gateways in order to provide seamless, transparent access to the distributed resources at a single endpoint, and/or within a single interface.
    Type: Application
    Filed: March 9, 2022
    Publication date: April 20, 2023
    Inventors: Biju Ramachandra Kaimal, Andrew J. Thomas, Venkata Suresh Reddy Obulareddy, Mayur Premi, Robert W. Cook, Ramesh Kamath, Matthew Charles Setzer, Madan Mohan Nayak
  • Patent number: 10841339
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Robert W. Cook, Andrew J. Thomas, Dmitri Samosseiko, Mark D. Harris
  • Patent number: 10778725
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 15, 2020
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Dmitri Samosseiko
  • Patent number: 10558800
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: February 11, 2020
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Daniel Salvatore Schiappa, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Harald Schütz, John Edward Tyrone Shaw, Anthony John Merry
  • Patent number: 10382459
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: August 13, 2019
    Assignee: Sophos Limited
    Inventors: Mark D. Harris, Simon Neil Reed, Kenneth D. Ray, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook
  • Publication number: 20190149580
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Application
    Filed: January 16, 2019
    Publication date: May 16, 2019
    Inventors: Kenneth D. Ray, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Dmitri Samosseiko
  • Patent number: 10225286
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: March 5, 2019
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Dmitri Samosseiko
  • Publication number: 20180324220
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Kenneth D. Ray, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Dmitri Samosseiko
  • Publication number: 20180278650
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Application
    Filed: May 2, 2018
    Publication date: September 27, 2018
    Inventors: Kenneth D. Ray, Robert W. Cook, Andrew J. Thomas, Dmitri Samosseiko, Mark D. Harris
  • Publication number: 20180278631
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Application
    Filed: May 2, 2018
    Publication date: September 27, 2018
    Inventors: Mark D. Harris, Simon Neil Reed, Kenneth D. Ray, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook
  • Publication number: 20180276378
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Application
    Filed: May 3, 2018
    Publication date: September 27, 2018
    Inventors: Kenneth D. Ray, Daniel Salvatore Schiappa, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Harald Schütz, John Edward Tyrone Shaw, Anthony John Merry
  • Patent number: 9992228
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: June 5, 2018
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Dmitri Samosseiko
  • Patent number: 9967283
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted untrusted processes or corporate private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: May 8, 2018
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Robert W. Cook, Andrew J. Thomas, Dmitri Samosseiko, Mark D. Harris
  • Patent number: 9965627
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: May 8, 2018
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Daniel Salvatore Schiappa, Simon Neil Reed, Mark D. Harris, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook, Harald Schütz, John Edward Tyrone Shaw, Anthony John Merry
  • Patent number: 9967264
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted/untrusted processes or corporate/private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: May 8, 2018
    Assignee: Sophos Limited
    Inventors: Mark D. Harris, Simon Neil Reed, Kenneth D. Ray, Neil Robert Tyndale Watkiss, Andrew J. Thomas, Robert W. Cook
  • Patent number: 9860277
    Abstract: Threat detection instrumentation is simplified by providing and updating labels for computing objects in a context-sensitive manner. This may include simple labeling schemes to distinguish between objects, e.g., trusted untrusted processes or corporate private data. This may also include more granular labeling schemes such as a three-tiered scheme that identifies a category (e.g., financial, e-mail, game), static threat detection attributes (e.g., signatures, hashes, API calls), and explicit identification (e.g., what a file or process calls itself). By tracking such data for various computing objects and correlating these labels to malware occurrences, rules can be written for distribution to endpoints to facilitate threat detection based on, e.g., interactions of labeled objects, changes to object labels, and so forth.
    Type: Grant
    Filed: September 14, 2014
    Date of Patent: January 2, 2018
    Assignee: Sophos Limited
    Inventors: Kenneth D. Ray, Robert W. Cook, Andrew J. Thomas, Dmitri Samosseiko, Mark D. Harris
  • Patent number: 9444673
    Abstract: Methods, systems, and apparatuses for down-converting a modulate carrier signal to a demodulated baseband signal by sampling the energy of the carrier signal are described herein. Briefly stated, such methods systems, and apparatuses operate by receiving a modulated carrier signal and using pulses with apertures to control a switch so as to (a) transfer energy from the modulated carrier signal and accumulate the transferred energy in a capacitor when the switch is closed during the apertures of the pulses and (b) discharge some of the previously accumulated energy from the capacitor into load circuitry at least when the switch is open. The demodulated baseband signal is generated from (i) accumulating energy transferred to the capacitor each time the switch is closed during the apertures of the pulses, and (ii) discharging some of the previously accumulated energy into the load circuitry each time the switch is opened.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: September 13, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.
  • Patent number: 9350591
    Abstract: Methods for down converting a modulated carrier signal to a demodulated baseband signal are described herein. The method requires that a first portion of energy is transferred from the modulated carrier signal, and stored at a first storage device when a first switch is on. At least some of the energy stored in the first storage device is discharged when the first switch is off. The method further comprises transferring a second portion of energy from the modulated carrier signal, storing at a second storage device the second portion of transferred energy when a second switch is on, and discharging at least some of the energy stored in the second storage device when the second switch is off.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: May 24, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 9325556
    Abstract: Methods, systems, and apparatuses for down-converting a modulate earner signal to a demodulated baseband signal by sampling the energy of the carrier signal are described herein. Briefly stated, such methods systems, and apparatuses operate by receiving a modulated carrier signal and using pulses with apertures to control a switch so as to (a) transfer energy from the modulated carrier signal and accumulate the transferred energy in a capacitor when the switch is closed during the apertures of the pukes and (b) discharge some of the previously accumulated energy from the capacitor into load circuitry at least when the switch is open. The demodulated baseband signal is generated from (i) accumulating energy transferred to the capacitor each time the switch is closed during the apertures of the pulses, and (ii) discharging some of the previously accumulated energy into the load circuitry each time the switch is opened.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 26, 2016
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.