Patents by Inventor Robert W. Crocker

Robert W. Crocker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8563325
    Abstract: A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 22, 2013
    Assignee: Sandia Corporation
    Inventors: Michael Bartsch, Michael P. Kanouff, Scott M. Ferko, Robert W. Crocker, Karl Wally
  • Patent number: 7678256
    Abstract: Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: March 16, 2010
    Assignee: Sandia Corporation
    Inventors: Rafael V. Davalos, Blake A. Simmons, Robert W. Crocker, Eric B. Cummings
  • Patent number: 7452507
    Abstract: Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: November 18, 2008
    Assignee: Sandia Corporation
    Inventors: Ronald F. Renzi, Karl Wally, Robert W. Crocker, James F. Stamps, Stewart K. Griffiths, Julia A. Fruetel, Brent A. Horn, Isaac R. Shokair, Daniel D. Yee, Victoria A. VanderNoot, Boyd J. Wiedenman, Jason A. A. West, Scott M. Ferko
  • Patent number: 7384526
    Abstract: Electrokinetic (“EK”) pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 ?L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 10, 2008
    Assignee: Sandia Corporation
    Inventors: Bruce P. Mosier, Robert W. Crocker, Kamlesh D. Patel
  • Publication number: 20080105565
    Abstract: Disclosed herein are microfluidic devices for assaying at least one analyte specie in a sample comprising at least one analyte concentration area in a microchannel having insulating structures on or in at least one wall of the microchannel which provide a nonuniform electric field in the presence of an electric field provided by off-chip electrodes; and a pair of passivated sensing electrodes for impedance detection in a detection area. Also disclosed are assay methods and methods of making.
    Type: Application
    Filed: November 3, 2006
    Publication date: May 8, 2008
    Inventors: Rafael V. Davalos, Blake A. Simmons, Robert W. Crocker, Eric B. Cummings
  • Patent number: 7225683
    Abstract: A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 ?L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: June 5, 2007
    Assignee: Sandia National Laboratories
    Inventors: Cindy K. Harnett, Robert W. Crocker, Bruce P. Mosier, Pamela F. Caton, James F. Stamps
  • Patent number: 7213473
    Abstract: An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1–100 ?L/min into microsystem load pressures of up to 1000–50 psi, respectively. Flowrates can be specified within 0.5 ?L/min and volumes as small as 80 nL can be metered.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: May 8, 2007
    Assignee: Sandia National Laboratories
    Inventors: Bruce P. Mosier, Robert W. Crocker, Kamlesh D. Patel, Cindy K. Harnett
  • Patent number: 7204264
    Abstract: A freeze-thaw valve and a method of micro-machining the freeze-thaw valve is provided and includes a valve housing, wherein the valve housing defines a housing cavity and includes a housing inlet, a housing vent, a capillary tubing inlet and a capillary tubing outlet. A valve body is provided, at least a portion of which is lithographically constructed, wherein the valve body includes a refrigerant inlet, a refrigerant outlet and an expansion chamber. The expansion chamber is disposed to communicate the refrigerant inlet with the refrigerant outlet and includes a restriction region having a flow restriction. Additionally, the valve body is disposed within the housing cavity to form an insulating channel between the valve housing and the valve body.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: April 17, 2007
    Assignee: Waters Investments Ltd.
    Inventors: Robert W. Crocker, Pamela F. Caton, Geoff C. Gerhardt
  • Patent number: 7094326
    Abstract: An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: August 22, 2006
    Assignee: Sandia National Laboratories
    Inventors: Robert W. Crocker, Cindy K. Harnett, Judith L. Rognlien
  • Publication number: 20040221507
    Abstract: Experiments were conducted to investigate the reforming of organic compounds (primarily methanol) in supercritical water at 550° C.-700° C. and 27.6 MPa in a tubular Inconel® 625 reactor. The results show that methanol can be completely converted to a product stream that is low in methane and near the equilibrium composition of hydrogen, carbon monoxide, and carbon dioxide. The effect of reactor temperature, feed concentration of methanol, and residence time on both conversion and product gas composition are presented.
    Type: Application
    Filed: May 7, 2003
    Publication date: November 11, 2004
    Inventors: Benjamin C. Wu, Karl Wally, Steven F. Rice, Robert W. Crocker
  • Publication number: 20040126279
    Abstract: Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.
    Type: Application
    Filed: August 4, 2003
    Publication date: July 1, 2004
    Inventors: Ronald F. Renzi, Karl Wally, Robert W. Crocker, James F. Stamps, Stewart K. Griffiths, Julia A. Fruetel, Brent A. Horn, Isaac R. Shokair, Daniel D. Yee, Victoria A. Vandernoot, Boyd J. Wiedenmann, Jason A. A. West, Scott M. Ferko
  • Publication number: 20040118689
    Abstract: An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.
    Type: Application
    Filed: December 24, 2002
    Publication date: June 24, 2004
    Inventors: Robert W. Crocker, Cindy K. Harnett, Judith L. Rognlien
  • Publication number: 20040107996
    Abstract: A flow control apparatus for controlling and regulating liquid flow rates. The apparatus is designed for the regulation and control of the flow of very small quantities of liquid over a continuous range from a few microliters/min to below one nanoliter/min from a high pressure source. The apparatus comprises a low permeability liquid flow channel, electrodes positioned within the liquid flow channel; and a power supply connected to the electrodes. Connected to the outlet of a high pressure liquid source, such as an electrokinetic pump, the variable flow apparatus controls flow from the pump by generating an opposing or augmenting electroosmotic within the low permeability flow channel. By adding an accumulator in combination with the variable flow apparatus to modulate the pressure-driven flow from the accumulator, the dynamic flow range is enhanced.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Inventors: Robert W. Crocker, Kamlesh D. Patel, Gabriela S. Chirica
  • Patent number: 6675660
    Abstract: A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 &mgr;L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: January 13, 2004
    Assignee: Sandia National Laboratories
    Inventors: Bruce P. Mosier, Robert W. Crocker, Cindy K. Harnett
  • Patent number: 5882621
    Abstract: A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: March 16, 1999
    Assignee: Sandia Corporation
    Inventors: Narayan Doddapaneni, James C. F. Wang, Robert W. Crocker, David Ingersoll, David W. Firsich