Patents by Inventor Robert W. Olsen

Robert W. Olsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10407030
    Abstract: A filler neck for use with an automotive fluid container having a body that includes an opening in communication with a reservoir and a fluid passageway for allowing fluid to flow through the body into the container. The reservoir and the fluid passageway are configured to regulate fluid flow through the body. The reservoir has a fill limit section. The body further includes an air passageway, an air channel and an exhaust port for allowing displaced air from the container to flow through the body. The air passageway, the air channel and the exhaust port are integrally formed with the body. The exhaust port is positioned above the fill limit section to maximize air exhaust and minimize fluid leakage from the body.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: September 10, 2019
    Assignee: Toledo Molding & Die, Inc.
    Inventors: Robert F. Olsen, James A. Papke, John D. Law, Earl W. Larrow
  • Patent number: 8545754
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Patent number: 7829018
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: November 9, 2010
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Publication number: 20100272607
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the apparatus having an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus, the apparatus comprising: a core in communication with the inlet such that blood from a patient can be supplied to the core, the core comprising a first element and a second element that interfit to define openings, wherein the elements and the openings together enhance flow of blood from the patient radially outward from the core; a heat exchanger that is arranged about the core and through which blood from the core can move radially outward; and an oxygenator that is arranged about the heat exchanger and through which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20100269342
    Abstract: Described is a method of making an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit, the steps comprising: providing a core through which blood can be supplied to the apparatus from a patient; providing a heat exchanger about the core such that blood from the core can move radially outward through the heat exchanger; providing an oxygenator about the heat exchanger such that blood from the heat exchanger can move radially outward through the oxygenator; and placing the core, heat exchanger and oxygenator in a housing that includes an inlet in communication with the core and an outlet that is located radially outward from the inlet in order to define a flowpath for blood through the apparatus.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li
  • Publication number: 20100274170
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Publication number: 20100272606
    Abstract: Described is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit comprising: an inlet mandrel that is configured such that the blood moves radially outward from the inlet mandrel through the openings in a radial direction; a heat exchanger arranged around the inlet mandrel, wherein blood can move radially outward with the transfer of heat to or from the blood; an oxygenator arranged around the heat exchanger, wherein blood can move from the heat exchanger radially outward with the transfer of oxygen into the blood; and a housing that houses the inlet mandrel, the heat exchanger and the oxygenator, and that comprises a blood inlet in communication with the inlet mandrel in order to allow blood to enter the apparatus from the patient, and a blood outlet in communication with the oxygenator in order for blood to exit the apparatus, wherein the blood outlet is located in the housing radially outward from the inlet.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 28, 2010
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Partick J. Cloutier, Anil Thapa, Ming Li, Kevin McInotosh
  • Patent number: 7740800
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: June 22, 2010
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Frederick A. Shorey, Laura A. Yonce, Mark D. Stringham
  • Patent number: 7704455
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: April 27, 2010
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Patent number: 7682563
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: March 23, 2010
    Assignee: Medtronic, Inc.
    Inventors: Walter L. Carpenter, Robert W. Olsen, Frederick A. Shorey, Jr., Mark G. Bearss, Bruce R. Jones, Laura A. Yonce
  • Patent number: 7335334
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: February 26, 2008
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Patent number: 7204958
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 17, 2007
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Frederick A. Shorey, Laura A. Yonce, Mark D. Stringham
  • Patent number: 7201870
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 10, 2007
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Patent number: 7198751
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: April 3, 2007
    Assignee: Medtronic, Inc.
    Inventors: Walter L. Carpenter, Robert W. Olsen, Stefanie Heine, Frederick A. Shorey, Jr., Laura A. Yonce
  • Patent number: 7189352
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 13, 2007
    Assignee: Medtronic, Inc.
    Inventors: Walter L. Carpenter, Robert W. Olsen, Frederick A. Shorey, Jr., Mark G. Bearss, Bruce R. Jones, Laura A. Yonce
  • Publication number: 20040217054
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Application
    Filed: December 22, 2003
    Publication date: November 4, 2004
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Frederick A. Shorey, Laura A. Yonce, Mark D. Stringham
  • Publication number: 20040220509
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Application
    Filed: December 22, 2003
    Publication date: November 4, 2004
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Publication number: 20040195178
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Application
    Filed: December 22, 2003
    Publication date: October 7, 2004
    Inventors: Walter L. Carpenter, Robert W. Olsen, Frederick A. Shorey, Mark G. Bearss, Bruce R. Jones, Laura A. Yonce
  • Publication number: 20040197223
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Application
    Filed: December 22, 2003
    Publication date: October 7, 2004
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Patent number: 5997816
    Abstract: A heat exchanger for medical applications is disclosed. The heat exchanger is characterized in that it is configured to provide a high heat transfer efficiency while minimizing the possibility of formation gaseous emboli and maximizing the ability to entrap and remove any such emboli which form or are introduced into the device. The heat exchanger is particularly well-suited for use in connection with cardioplegia apparatus.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: December 7, 1999
    Assignee: Medtronic Avecor Cardiovascular, Inc.
    Inventors: Kevin D. McIntosh, Robert W. Olsen, Bruce R. Jones, Mark S. Goodin