Patents by Inventor Robert W. Rosenstein

Robert W. Rosenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7645573
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: January 12, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Nicholas Bachur, Jr., Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Patent number: 7645613
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: January 12, 2010
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Gary Siuzdak, Elizabeth J. Want, Zhouxin Shen, Nicholas Bachur, Jr., Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Patent number: 7632685
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 15, 2009
    Assignee: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Jr., Richard L. Moore, Michael L. Towns, Nicholas Bachur, Jr., Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20080138832
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated from the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: September 25, 2007
    Publication date: June 12, 2008
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20070184512
    Abstract: Mass spectrometry techniques for determining the status of sepsis in an individual are provided. A biomarker profile resolved from a biological sample, taken from the individual, using a mass spectrometry technique is compared to a reference biomarker profile. A single such comparison classifies the individual as belonging to or not belonging to a reference population. The individual's biomarker profile and the reference biomarker profile comprise a plurality of ions each having a mass-to-charge ratio of about 100 Daltons to about 1000 Daltons. The plurality of ions can be detected by electrospray ionization mass spectrometry in positive mode. The comparison uses a decision rule, such as a classification tree, that determines the status of sepsis in the individual without requiring knowledge of the identity of the biomarkers in the biomarker profile from the individual and without requiring knowledge of the identity of the biomarkers in the reference biomarker profile.
    Type: Application
    Filed: December 28, 2006
    Publication date: August 9, 2007
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20040157242
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Application
    Filed: November 12, 2003
    Publication date: August 12, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice, Gary Siuzdak, Elizabeth Want, Zhouxin Shen
  • Publication number: 20040106142
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population who develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms.
    Type: Application
    Filed: November 12, 2003
    Publication date: June 3, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20040096917
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished by comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated from the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, James G. Nadeau, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Publication number: 20040097460
    Abstract: The early prediction or diagnosis of sepsis advantageously allows for clinical intervention before the disease rapidly progresses beyond initial stages to the more severe stages, such as severe sepsis or septic shock, which are associated with high mortality. Early prediction or diagnosis is accomplished using a molecular diagnostics approach, involving comparing an individual's profile of biomarker expression to profiles obtained from one or more control, or reference, populations, which may include a population that develops sepsis. Recognition of features in the individual's biomarker profile that are characteristic of the onset of sepsis allows a clinician to diagnose the onset of sepsis from a bodily fluid isolated at the individual at a single point in time. The necessity of monitoring the patient over a period of time is, therefore, avoided, advantageously allowing clinical intervention before the onset of serious symptoms of sepsis.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 20, 2004
    Applicant: Becton, Dickinson and Company
    Inventors: Richard M. Ivey, Thomas M. Gentle, Richard L. Moore, Michael L. Towns, Nicholas Bachur, Robert W. Rosenstein, Paul E. Goldenbaum, Song Shi, Donald Copertino, James Garrett, Gregory Tice
  • Patent number: 6660489
    Abstract: A method for extracting ATP from a biological sample is disclosed. The method involves introducing a cationic extractant and an anionic substance and then extracting ATP. The method may be used to assay for the presence of ATP in a biological sample or to determine the amount of ATP extracted from a biological sample. The method is particularly useful in detecting contamination on surfaces and in food products. A reagent, a test device and a test kit that involve the use of the method to detect contamination are also disclosed.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: December 9, 2003
    Assignee: Becton, Dickinson and Company
    Inventors: Leanne M. Schrecengost, Jon C. Wannlund, Robert W. Rosenstein
  • Patent number: 5798273
    Abstract: The present invention relates to a method and assay device for detecting small analytes. The results of the assay can be directly read from the device, which is a lateral flow device.
    Type: Grant
    Filed: September 25, 1996
    Date of Patent: August 25, 1998
    Assignees: Becton Dickinson and Company, Millipore Corporation
    Inventors: John K. Shuler, Stephen J. Lovell, Abigail S. Fisher, Alan J. Weiss, Robert W. Rosenstein
  • Patent number: 5591645
    Abstract: A chromatographic test strip comprising a solid support having at least a first portion and a second portion with said portions being in the same plane so as to permit capillary flow communication with each other. The sample is added to the first portion. The first portion also may comprise a tracer portion having a tracer movably supported therein. The tracer consists of a visible particulate marker. In the second portion, a binder is immobilized. The test strip is useful in a variety of immunoassays.
    Type: Grant
    Filed: April 20, 1993
    Date of Patent: January 7, 1997
    Assignee: Becton, Dickinson & Co.
    Inventor: Robert W. Rosenstein
  • Patent number: 4855240
    Abstract: Test device and assay for determining analyte wherein tracer and sample may be simultaneously applied to different absorbent material portions both in capillary flow communication with an absorbent material portion having a binder supported thereon in a manner whereby sample contacts binder, prior to any substantial contact between sample and tracer or tracer and binder.
    Type: Grant
    Filed: May 13, 1987
    Date of Patent: August 8, 1989
    Assignee: Becton Dickinson and Company
    Inventors: Robert W. Rosenstein, Timothy G. Bloomster
  • Patent number: 4841024
    Abstract: I(g)G3 antibody is purified by affinity chromatography and collection of released antibody at a pH of 9.0 to 9.6. The purification is effected in a column containing both an affinity matrix and a desalting matrix, with the column being equilibrated to a pH of from 9.0 to 9.6. I(g)G3 antibody may be stored at pH 9.0 to 9.6.
    Type: Grant
    Filed: September 15, 1986
    Date of Patent: June 20, 1989
    Assignee: Becton Dickinson and Company
    Inventors: Gene R. Nathans, Robert W. Rosenstein
  • Patent number: RE38430
    Abstract: A chromatographic test strip comprising a solid support having at least a first portion and a second portion with said portions being in the same plane so as to permit capillary flow communication with each other. The sample is added to the first portion. The first portion also may comprise a tracer portion having a tracer movably supported therein. The tracer consists of a visible particulate marker. In the second portion, a binder is immobilized. The test strip is useful in a variety of immunoassays.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: February 17, 2004
    Assignee: Becton, Dickinson and Company
    Inventor: Robert W. Rosenstein