Patents by Inventor Robert Woehl

Robert Woehl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220367738
    Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: June 9, 2022
    Publication date: November 17, 2022
    Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
  • Patent number: 10672924
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: June 2, 2020
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Publication number: 20190140116
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Application
    Filed: January 2, 2019
    Publication date: May 9, 2019
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Patent number: 10177260
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: January 8, 2019
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Patent number: 10164131
    Abstract: Multi-layer sputtered metal seed for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. In an example, a solar cell includes a substrate. A semiconductor region is disposed in or above the substrate. A conductive contact is disposed on the semiconductor region and includes a seed material stack in contact with the semiconductor region. The seed material stack includes a first aluminum layer having a first crystallinity and disposed on the semiconductor layer, and a second aluminum layer having a second crystallinity and disposed on and having an interface with the first aluminum layer. The first crystallinity is different from the second crystallinity.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: December 25, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Michael Cudzinovic, Amjad Deyine, Robert Woehl
  • Publication number: 20180286994
    Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 4, 2018
    Inventors: RICHARD HAMILTON SEWELL, ROBERT WOEHL, JENS DIRK MOSCHNER, NILS-PETER HARDER
  • Patent number: 10032942
    Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: July 24, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsene Olivier Ngamo Toko
  • Patent number: 10030303
    Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 24, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Yu-Chen Shen, Taiqing Qiu, Robert Woehl, Kieran Mark Tracy, Mukul Agrawal
  • Patent number: 9935213
    Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: April 3, 2018
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
  • Patent number: 9768327
    Abstract: Fabricating a semiconductor device can include forming a metal seed region over a substrate. The method can include forming a mask over a first portion of the metal seed region. The method can also include forming a metal region over the metal seed region and removing the mask. The method can include forming metal contact fingers on the semiconductor device, where the forming includes etching the first portion of the metal seed region with an etchant comprising an acid, an oxidizer and chloride ions.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: September 19, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, David Aaron Randolph Barkhouse, Paul Loscutoff
  • Publication number: 20170222073
    Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsene Olivier Ngamo Toko
  • Publication number: 20170179308
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Publication number: 20170125612
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Patent number: 9634178
    Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 25, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsène Olivier Ngamo Toko
  • Patent number: 9620655
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Publication number: 20160380122
    Abstract: Fabricating a semiconductor device can include forming a metal seed region over a substrate. The method can include forming a mask over a first portion of the metal seed region. The method can also include forming a metal region over the metal seed region and removing the mask. The method can include forming metal contact fingers on the semiconductor device, where the forming includes etching the first portion of the metal seed region with an etchant comprising an acid, an oxidizer and chloride ions.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Robert Woehl, David Aaron Randolph Barkhouse, Paul Loscutoff
  • Publication number: 20160380134
    Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
  • Publication number: 20160380126
    Abstract: A solar cell can include a substrate, a semiconductor region disposed in or above the substrate, and a conductive stack that includes a first conductive region, a multi-layer barrier region, and a second conductive region.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: David Aaron Randolph Barkhouse, Todd Richards Johnson, Paul Loscutoff, Robert Woehl
  • Publication number: 20160181450
    Abstract: Multi-layer sputtered metal seed for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. In an example, a solar cell includes a substrate. A semiconductor region is disposed in or above the substrate. A conductive contact is disposed on the semiconductor region and includes a seed material stack in contact with the semiconductor region. The seed material stack includes a first aluminum layer having a first crystallinity and disposed on the semiconductor layer, and a second aluminum layer having a second crystallinity and disposed on and having an interface with the first aluminum layer. The first crystallinity is different from the second crystallinity.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Inventors: Michael Cudzinovic, Amjad Deyine, Robert Woehl
  • Patent number: 8748310
    Abstract: A method for producing a metal contact structure of a photovoltaic solar cell, including: applying an electrically non-conductive insulating layer to a semiconductor substrate, applying a metal contact layer to the insulating layer, and generating a plurality of local electrically conductive connections between the semiconductor substrate and the contact layer right through the insulating layer. The metal contact layer is formed using two pastes containing metal particles: the first paste containing metal particles is applied to local regions, and the second paste containing metal particles is applied covering at least the regions covered with the first paste and partial regions located therebetween.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung E.V.
    Inventors: Daniel Biro, Benjamin Thaidigsmann, Florian Clement, Robert Woehl, Edgar-Allan Wotke