Patents by Inventor Robert Woehl
Robert Woehl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12132126Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: GrantFiled: June 9, 2022Date of Patent: October 29, 2024Assignee: Maxeon Solar Pte. Ltd.Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
-
Publication number: 20240313133Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: ApplicationFiled: May 24, 2024Publication date: September 19, 2024Inventors: RICHARD HAMILTON SEWELL, ROBERT WOEHL, JENS DIRK MOSCHNER, NILS-PETER HARDER
-
Publication number: 20220367738Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: ApplicationFiled: June 9, 2022Publication date: November 17, 2022Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
-
Patent number: 10672924Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: GrantFiled: January 2, 2019Date of Patent: June 2, 2020Assignees: SunPower Corporation, Total Marketing ServicesInventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Publication number: 20190140116Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: ApplicationFiled: January 2, 2019Publication date: May 9, 2019Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Patent number: 10177260Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: GrantFiled: March 8, 2017Date of Patent: January 8, 2019Assignees: SunPower Corporation, Total Marketing ServicesInventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Patent number: 10164131Abstract: Multi-layer sputtered metal seed for solar cell conductive contacts and methods of forming solar cell conductive contacts are described. In an example, a solar cell includes a substrate. A semiconductor region is disposed in or above the substrate. A conductive contact is disposed on the semiconductor region and includes a seed material stack in contact with the semiconductor region. The seed material stack includes a first aluminum layer having a first crystallinity and disposed on the semiconductor layer, and a second aluminum layer having a second crystallinity and disposed on and having an interface with the first aluminum layer. The first crystallinity is different from the second crystallinity.Type: GrantFiled: December 19, 2014Date of Patent: December 25, 2018Assignees: SunPower Corporation, Total Marketing ServicesInventors: Michael Cudzinovic, Amjad Deyine, Robert Woehl
-
Publication number: 20180286994Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: ApplicationFiled: April 2, 2018Publication date: October 4, 2018Inventors: RICHARD HAMILTON SEWELL, ROBERT WOEHL, JENS DIRK MOSCHNER, NILS-PETER HARDER
-
Patent number: 10030303Abstract: Sputter tools are described. In one embodiment, an apparatus to support a wafer includes a pallet having a depression to receive the wafer. The pallet includes an opening below the depression, and an edge in the depression is to support the wafer over the opening. A cover at least partially covers the opening. In one example, the cover may be a plate with one or more holes, and a pipe may be located below each of the holes in the cover. In one embodiment, a wafer-processing system includes a processing chamber and a pallet with a depression to receive a wafer. The pallet has an opening below the depression, and an edge in the depression supports the wafer over the opening. In one such embodiment, a cover at least partially covers the opening. According to one embodiment, an energy-absorbing material is disposed below the opening in the pallet.Type: GrantFiled: December 19, 2014Date of Patent: July 24, 2018Assignees: SunPower Corporation, Total Marketing ServicesInventors: Yu-Chen Shen, Taiqing Qiu, Robert Woehl, Kieran Mark Tracy, Mukul Agrawal
-
Patent number: 10032942Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.Type: GrantFiled: April 20, 2017Date of Patent: July 24, 2018Assignees: SunPower Corporation, Total Marketing ServicesInventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsene Olivier Ngamo Toko
-
Patent number: 9935213Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: GrantFiled: June 26, 2015Date of Patent: April 3, 2018Assignees: SunPower Corporation, Total Marketing ServicesInventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
-
Patent number: 9768327Abstract: Fabricating a semiconductor device can include forming a metal seed region over a substrate. The method can include forming a mask over a first portion of the metal seed region. The method can also include forming a metal region over the metal seed region and removing the mask. The method can include forming metal contact fingers on the semiconductor device, where the forming includes etching the first portion of the metal seed region with an etchant comprising an acid, an oxidizer and chloride ions.Type: GrantFiled: June 25, 2015Date of Patent: September 19, 2017Assignees: SunPower Corporation, Total Marketing ServicesInventors: Robert Woehl, David Aaron Randolph Barkhouse, Paul Loscutoff
-
Publication number: 20170222073Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.Type: ApplicationFiled: April 20, 2017Publication date: August 3, 2017Inventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsene Olivier Ngamo Toko
-
Publication number: 20170179308Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: ApplicationFiled: March 8, 2017Publication date: June 22, 2017Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Publication number: 20170125612Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: ApplicationFiled: October 29, 2015Publication date: May 4, 2017Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Patent number: 9634178Abstract: Methods of fabricating solar cells using a metal-containing thermal and diffusion barrier layer in foil-based metallization approaches, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of semiconductor regions in or above a substrate. The method also includes forming a metal-containing thermal and diffusion barrier layer above the plurality of semiconductor regions. The method also includes forming a metal seed layer on the metal-containing thermal and diffusion barrier layer. The method also includes forming a metal conductor layer on the metal seed layer. The method also includes laser welding the metal conductor layer to the metal seed layer. The metal-containing thermal and diffusion barrier layer protects the plurality of semiconductor regions during the laser welding.Type: GrantFiled: December 16, 2015Date of Patent: April 25, 2017Assignees: SunPower Corporation, Total Marketing ServicesInventors: Taeseok Kim, Robert Woehl, Gabriel Harley, Nils-Peter Harder, Jens-Dirk Moschner, Matthieu Moors, Michel Arsène Olivier Ngamo Toko
-
Patent number: 9620655Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.Type: GrantFiled: October 29, 2015Date of Patent: April 11, 2017Assignees: SunPower Corporation, Total Marketing ServicesInventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
-
Publication number: 20160380126Abstract: A solar cell can include a substrate, a semiconductor region disposed in or above the substrate, and a conductive stack that includes a first conductive region, a multi-layer barrier region, and a second conductive region.Type: ApplicationFiled: June 25, 2015Publication date: December 29, 2016Inventors: David Aaron Randolph Barkhouse, Todd Richards Johnson, Paul Loscutoff, Robert Woehl
-
Publication number: 20160380122Abstract: Fabricating a semiconductor device can include forming a metal seed region over a substrate. The method can include forming a mask over a first portion of the metal seed region. The method can also include forming a metal region over the metal seed region and removing the mask. The method can include forming metal contact fingers on the semiconductor device, where the forming includes etching the first portion of the metal seed region with an etchant comprising an acid, an oxidizer and chloride ions.Type: ApplicationFiled: June 25, 2015Publication date: December 29, 2016Inventors: Robert Woehl, David Aaron Randolph Barkhouse, Paul Loscutoff
-
Publication number: 20160380134Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.Type: ApplicationFiled: June 26, 2015Publication date: December 29, 2016Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder