Patents by Inventor Robert Zelenka

Robert Zelenka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707258
    Abstract: An intravascular sensor device can be used to guide treatment of a diseased blood vessel in the body of a patient. In some examples, the intravascular sensor device includes a pressure sensor and an ultrasound transducer. The intravascular sensor device is used to measure a pressure within the diseased blood vessel and acquire an ultrasound image of the diseased blood vessel. The pressure may be measured during hyperemic blood flow that is caused by a pharmacologic vasodilator drug. The measured pressure can be used to calculate a fractional flow reserve value. The ultrasound image can be used to determine a physical dimension of the blood vessel, such as cross-sectional area. The fractional flow reserve value and physical dimensions of the blood vessel can be used to optimize patient treatment.
    Type: Grant
    Filed: May 28, 2021
    Date of Patent: July 25, 2023
    Assignee: Zed Medical, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, Robert Zelenka
  • Patent number: 11666309
    Abstract: A catheter is disclosed comprising a sheath surrounding an inner lumen. The inner lumen is configured to receive a fluid. The sheath includes a sheath portion that comprises a hydrophilic material, wherein the hydrophilic material is in direct contact with the fluid. The hydrophilic material helps resist formation of air bubbles along the inner lumen.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 6, 2023
    Assignee: ACIST Medical Systems, Inc.
    Inventor: Robert Zelenka
  • Patent number: 11627869
    Abstract: An imaging probe for use in a catheter for ultrasonic imaging is provided. The imaging probe includes a transducer backing and a transducer configured to generate and receive ultrasonic waves. The transducer includes a first surface and a second surface that is opposite the first surface. The first surface faces the transducer backing and the second surface is disposed at an angle sloping toward a catheter center axis in a proximal direction.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: April 18, 2023
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert Zelenka, Tom Moore
  • Publication number: 20220133268
    Abstract: An intravascular sensor device can be used to guide treatment of a diseased blood vessel in the body of a patient. In some examples, the intravascular sensor device includes a pressure sensor and an ultrasound transducer. The intravascular sensor device is used to measure a pressure within the diseased blood vessel and acquire an ultrasound image of the diseased blood vessel. The pressure may be measured during hyperemic blood flow that is caused by a pharmacologic vasodilator drug. The measured pressure can be used to calculate a fractional flow reserve value. The ultrasound image can be used to determine a physical dimension of the blood vessel, such as cross-sectional area. The fractional flow reserve value and physical dimensions of the blood vessel can be used to optimize patient treatment.
    Type: Application
    Filed: May 28, 2021
    Publication date: May 5, 2022
    Inventors: Thomas C. Moore, Kendall R. Waters, Robert Zelenka
  • Patent number: 11147535
    Abstract: An imaging window of an imaging catheter includes a first imaging window section and a second imaging window section. The first imaging window section has a finite length and is formed from a first material having a flexural modulus. The second imaging window section has a finite length and is formed from a second material having a flexural modulus. The flexural modulus of the first material is different than the flexural modulus of the second material.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 19, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert Zelenka, Ruth E. Beeby
  • Patent number: 11109836
    Abstract: Embodiments of the present invention allow more full characterization of a stenotic lesion by measuring both pressure drop across the stenotic lesion and the size of the vessel lumen adjacent the stenotic lesion, both with sensors delivered intravascularly to the stenotic lesion site. In preferred embodiments, the size (e.g., inner diameter, cross-sectional profile) of the vessel lumen adjacent the stenotic lesion can be measured via one or more intravascular ultrasound transducers. In preferred embodiments, the intravascular ultrasound transducer(s) can be delivered to the site of the stenotic lesion with the same delivery device that carries the pressure transducer(s).
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: September 7, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Jason F. Hiltner, Kendall R. Waters, Thomas C. Moore, Robert Zelenka
  • Patent number: 11109838
    Abstract: A catheter-based imaging system comprises a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further comprises an image generator coupled to the ultrasonic energy receiver that generates an image.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: September 7, 2021
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, Stephanie J. Buech, Robert Zelenka
  • Patent number: 10905851
    Abstract: A catheter a first sheath having a proximal end and a distal end, and a length extending between the proximal end and the distal end. The first sheath being devoid of any bonds between the proximal end and the distal end, and a flexural modulus of the first sheath varying along the length. A method of making a catheter having more than one flexural modulus.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 2, 2021
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Robert Zelenka, Ruth E. Beeby, Kendall R. Waters
  • Patent number: 10553776
    Abstract: An ultrasonic transducer includes a backing element, an active element overlying the backing layer, and a matching element overlying the active element, the matching element having an inner surface that contacts the active element and an outer surface with a non-homogeneous texture and/or material composition. The matching element may be formed by subtractive or deposition techniques.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 4, 2020
    Assignee: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Richard Bautista, Robert Zelenka
  • Publication number: 20190357756
    Abstract: An imaging probe for use in a catheter for ultrasonic imaging is provided. The imaging probe includes a transducer backing and a transducer configured to generate and receive ultrasonic waves. The transducer includes a first surface and a second surface that is opposite the first surface. The first surface faces the transducer backing and the second surface is disposed at an angle sloping toward a catheter center axis in a proximal direction.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Robert Zelenka, Tom Moore
  • Patent number: 10420456
    Abstract: An imaging probe for use in a catheter for ultrasonic imaging is provided. The catheter may be of the type including a sheath having an opening at a distal end for conducting a fluid there through. The imaging probe includes a distal housing coupled to a drive shaft for rotation, a transducer within the distal housing for generating and sensing ultrasonic waves, and a fluid flow promoter that promotes flow of the fluid within the sheath across the transducer.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: September 24, 2019
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert Zelenka, Tom Moore
  • Publication number: 20180338797
    Abstract: A catheter tracking system can be used to track motion and/or position of a catheter during delivery into a patient. A catheter tracking system can include an encoder and a guide roller to guide delivery of a catheter. The encoder can be configured to track motion or position the guide roller. The encoder may be a rotary optical encoder or a magnetic position sensor. A processing unit can also be used to determine motion or position of the catheter. The catheter tracking device may also include a wireless transmitter for communicating the catheter motion or position to an external device.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 29, 2018
    Applicant: SV-Medtech, Inc.
    Inventors: Thomas C. Moore, Kendall R. Waters, Robert Zelenka
  • Publication number: 20180235571
    Abstract: An intravascular sensor device can be used to guide treatment of a diseased blood vessel in the body of a patient. In some examples, the intravascular sensor device includes a pressure sensor and an ultrasound transducer. The intravascular sensor device is used to measure a pressure within the diseased blood vessel and acquire an ultrasound image of the diseased blood vessel. The pressure may be measured during hyperemic blood flow that is caused by a pharmacologic vasodilator drug. The measured pressure can be used to calculate a fractional flow reserve value. The ultrasound image can be used to determine a physical dimension of the blood vessel, such as cross-sectional area. The fractional flow reserve value and physical dimensions of the blood vessel can be used to optimize patient treatment.
    Type: Application
    Filed: October 28, 2017
    Publication date: August 23, 2018
    Inventors: Thomas C. Moore, Kendall R. Waters, Robert Zelenka
  • Publication number: 20180235572
    Abstract: An intravascular sensor device can be used to guide treatment of a diseased blood vessel in the body of a patient. In some examples, the intravascular sensor device includes a pressure sensor and an ultrasound transducer. The intravascular sensor device is used to measure a pressure within the diseased blood vessel and acquire an ultrasound image of the diseased blood vessel. The pressure may be measured during hyperemic blood flow that is caused by a pharmacologic vasodilator drug. The measured pressure can be used to calculate a fractional flow reserve value. The ultrasound image can be used to determine a physical dimension of the blood vessel, such as cross-sectional area. The fractional flow reserve value and physical dimensions of the blood vessel can be used to optimize patient treatment.
    Type: Application
    Filed: October 28, 2017
    Publication date: August 23, 2018
    Inventors: Thomas C. Moore, Kendall R. Waters, Robert Zelenka
  • Publication number: 20180000449
    Abstract: A catheter-based imaging system comprises a catheter having a telescoping proximal end, a distal end having a distal sheath and a distal lumen, a working lumen, and an ultrasonic imaging core. The ultrasonic imaging core is arranged for rotation and linear translation. The system further includes a patient interface module including a catheter interface, a rotational motion control system that imparts controlled rotation to the ultrasonic imaging core, a linear translation control system that imparts controlled linear translation to the ultrasonic imaging core, and an ultrasonic energy generator and receiver coupled to the ultrasonic imaging core. The system further comprises an image generator coupled to the ultrasonic energy receiver that generates an image.
    Type: Application
    Filed: September 15, 2017
    Publication date: January 4, 2018
    Inventors: Thomas C. Moore, Kendall R. Waters, Stephanie J. Buech, Robert Zelenka
  • Patent number: 9782148
    Abstract: An ultrasound catheter includes an elongated body, a first and second ablation element each configured to ablate soft tissue and an imaging core having an ultrasound transducer. In another example, an ultrasound catheter includes an elongated body, a RF ablator configured to ablate soft tissue at a frequency less than 1 MHz, and an ultrasound transducer configured to image at a frequency greater than or equal to 10 MHz. In another example, an ultrasound catheter apparatus includes an ultrasound catheter having an ablator and an ultrasound transducer, and a graphical user interface displayed using a computer processor. The graphical user interface displays a real-time image of a treatment area and the ultrasound catheter, and a chart displaying ablation as a function of time, the chart being updated in real-time.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: October 10, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Kendall R. Waters, Thomas C. Moore, Robert Zelenka, Richard Bautista
  • Patent number: 9675325
    Abstract: An imaging system comprises a catheter having a lumen, a rotatable imaging probe within the catheter lumen including a distal transducer and first and second conductors coupled to the transducer, and a coupler that couples the rotatable first and second conductors to non-rotatable third and fourth conductors, respectively. The coupler includes a rotary capacitive coupler.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: June 13, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Thomas C. Moore, Robert Zelenka
  • Publication number: 20170143305
    Abstract: Embodiments of the present invention allow more full characterization of a stenotic lesion by measuring both pressure drop across the stenotic lesion and the size of the vessel lumen adjacent the stenotic lesion, both with sensors delivered intravascularly to the stenotic lesion site. In preferred embodiments, the size (e.g., inner diameter, cross-sectional profile) of the vessel lumen adjacent the stenotic lesion can be measured via one or more intravascular ultrasound transducers. In preferred embodiments, the intravascular ultrasound transducer(s) can be delivered to the site of the stenotic lesion with the same delivery device that carries the pressure transducer(s).
    Type: Application
    Filed: January 13, 2017
    Publication date: May 25, 2017
    Inventors: Jason F. Hiltner, Kendall R. Waters, Thomas C. Moore, Robert Zelenka
  • Publication number: 20170104148
    Abstract: An ultrasonic transducer includes a backing element, an active element overlying the backing layer, and a matching element overlying the active element, the matching element having an inner surface that contacts the active element and an outer surface with a non-homogeneous texture and/or material composition. The matching element may be formed by subtractive or deposition techniques.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Inventors: Richard Bautista, Robert Zelenka
  • Patent number: 9610425
    Abstract: Methods of providing image-guided transendocardial injection of a therapeutic agent into a left ventricular wall of a heart. Some methods enable injections into heart tissue under visualization. The methods may include providing an endoventricular injection catheter having integrated echocardiographic capability. The endoventricular injection catheter may have an imaging core and an injection system carried on the elongated body with the imaging core. The method may include positioning the endoventricular injection catheter into the left ventricle of the heart, which inserts the imaging core into the heart. The method may also include transmitting ultrasonic energy via the imaging core, receiving reflected ultrasonic energy at the distal end, visualizing the left ventricular wall of the heart using the imaging core, identifying infarct regions of the left ventricle, and injecting a therapeutic agent into the visualized infarcted regions of the left ventricle using the injection system.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 4, 2017
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Kendall R. Waters, Thomas C. Moore, Robert Zelenka, Paul Zalesky