Patents by Inventor Roberto J. Cano

Roberto J. Cano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250121591
    Abstract: Inherent susceptibility of adhesive bonds to even minute quantities of contamination can often cause undetectable weakened bonds. Described herein are methods for producing composites that mitigate strict faying surface tolerances. In one aspect, the methods described herein use an adhesive to alleviate the strict manufacturing tolerances of previous techniques and methodologies. The inclusion of conventional ratio adhesive as a gap filler offers the advantage of being a drop-in replacement for existing state-of-the-art adhesively bonded composite joints. In another aspect, composites are produced by co-bonding with or without an adhesive. The methods described herein can seamlessly replace current bonding methods without requiring significant modifications or changes to the manufacturing process. This compatibility and ease of implementation makes the methods described herein a promising option for enhancing composite bonding in various industries where composite materials are utilized.
    Type: Application
    Filed: October 11, 2023
    Publication date: April 17, 2025
    Inventors: Tyler B. Hudson, Frank L. Palmieri, Austin J. Smith, Jin Ho Kang, Roberto J. Cano
  • Publication number: 20210360841
    Abstract: Aspects relate to building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 18, 2021
    Inventors: DONALD L. THOMSEN, III, ROBERTO J. CANO, BRIAN J. JENSEN, STEPHEN J. HALES, JOEL A. ALEXA
  • Patent number: 11076516
    Abstract: Aspects relate to methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 27, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald L. Thomsen, III, Roberto J. Cano, Brian J. Jensen, Stephen J. Hales, Joel A. Alexa
  • Patent number: 10450432
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 22, 2019
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Publication number: 20190053407
    Abstract: Disclosed are methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 14, 2019
    Inventors: DONALD L. THOMSEN, III, ROBERTO J. CANO, BRIAN J. JENSEN, STEPHEN J. HALES, JOEL A. ALEXA
  • Patent number: 10039217
    Abstract: Disclosed are methods of building Z-graded radiation shielding and covers. In one aspect. the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: July 31, 2018
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Donald Laurence Thomsen, III, Roberto J. Cano, Brian J. Jensen, Stephen J. Hales, Joel A. Alexa
  • Patent number: 9963345
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 8, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei
  • Publication number: 20180051147
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Application
    Filed: October 10, 2017
    Publication date: February 22, 2018
    Inventors: Keith L. Gordon, Emile J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 9783648
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: October 10, 2017
    Assignee: The United States of America as represented by the Administrator of the NASA
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 9447260
    Abstract: High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 20, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Mark B. Gruber, Brian J. Jensen, Roberto J. Cano
  • Publication number: 20160032066
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Application
    Filed: October 13, 2015
    Publication date: February 4, 2016
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Patent number: 9156957
    Abstract: A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 13, 2015
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Keith L. Gordon, Emilie J. Siochi, Brian W. Grimsley, Roberto J. Cano, Michael W. Czabaj
  • Publication number: 20140272170
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei, Robert G. Bryant
  • Patent number: 8683807
    Abstract: A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: April 1, 2014
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Travis L. Turner, Roberto J. Cano, Richard J. Silox, Ralph D. Buehrle, Christopher M. Cagle, Randolph H. Cabell, George C. Hilton
  • Patent number: 8661653
    Abstract: Methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the methods include improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade from the enclosure.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 4, 2014
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Donald Laurence Thomsen, III, Roberto J. Cano, Brian J Jensen, Stephen J Hales, Joel A Alexa
  • Publication number: 20120023737
    Abstract: Disclosed are methods of building Z-graded radiation shielding and covers. In one aspect, the method includes: providing a substrate surface having about medium Z-grade; plasma spraying a first metal having higher Z-grade than the substrate surface; and infusing a polymer layer to form a laminate. In another aspect, the method includes electro/electroless plating a first metal having higher Z-grade than the substrate surface. In other aspects, the invention provides methods of improving an existing electronics enclosure to build a Z-graded radiation shield by applying a temperature controller to at least part of the enclosure and affixing at least one layer of a first metal having higher Z-grade than the enclosure.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Inventors: Donald L. Thomsen, III, Roberto J. Cano, Brian J. Jensen, Stephen J. Hales, Joel A. Alexa
  • Patent number: 8017190
    Abstract: A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 13, 2011
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Erik S. Weiser
  • Publication number: 20110203288
    Abstract: A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 25, 2011
    Applicant: U. S. A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Travis L. Turner, Roberto J. Cano, Richard J. Silox, Ralph D. Buehrle, Christopher M. Cagle, Randolph H. Cabell, George C. Hilton
  • Patent number: 7958733
    Abstract: A jet engine exhaust nozzle flow effector is a chevron formed with a radius of curvature with surfaces of the flow effector being defined and opposing one another. At least one shape memory alloy (SMA) member is embedded in the chevron closer to one of the chevron's opposing surfaces and substantially spanning from at least a portion of the chevron's root to the chevron's tip.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: June 14, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Travis L. Turner, Roberto J. Cano, Richard J. Silcox, Ralph D. Buehrle, Christopher M. Cagle, Randolph H. Cabell, George C. Hilton
  • Publication number: 20110070793
    Abstract: A metal/fiber laminate has a plurality of adjacent layers. Each layer is porous and includes an arrangement of fibers. At least one of the layers has its fibers coated with a metal. A polymer matrix permeates each such arrangement.
    Type: Application
    Filed: October 18, 2010
    Publication date: March 24, 2011
    Applicants: United States of America as represented by the Administrator of the National Aeronautics
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Erik S. Weiser