Patents by Inventor Roberto Scala

Roberto Scala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12195873
    Abstract: Crystal pulling system having a housing and a crucible assembly are disclosed. The system includes a heat shield that defines a central passage through which an ingot passes during ingot growth. A cover member is moveable within the heat shield along a pull axis. The cover member may include an insulation layer. The cover member covers at least a portion of the charge during meltdown.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 14, 2025
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Paolo Tosi, Matteo Pannocchia, Roberto Scala
  • Patent number: 12157954
    Abstract: Crystal pulling system having a housing and a crucible assembly are disclosed. The system includes a heat shield that defines a central passage through which an ingot passes during ingot growth. A cover member is moveable within the heat shield along a pull axis. The cover member may include an insulation layer. The cover member covers at least a portion of the charge during meltdown.
    Type: Grant
    Filed: January 4, 2023
    Date of Patent: December 3, 2024
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Paolo Tosi, Matteo Pannocchia, Roberto Scala
  • Publication number: 20230151510
    Abstract: Crystal pulling system having a housing and a crucible assembly are disclosed. The system includes a heat shield that defines a central passage through which an ingot passes during ingot growth. A cover member is moveable within the heat shield along a pull axis. The cover member may include an insulation layer. The cover member covers at least a portion of the charge during meltdown.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 18, 2023
    Inventors: Paolo Tosi, Matteo Pannocchia, Roberto Scala
  • Publication number: 20230145430
    Abstract: Crystal pulling system having a housing and a crucible assembly are disclosed. The system includes a heat shield that defines a central passage through which an ingot passes during ingot growth. A cover member is moveable within the heat shield along a pull axis. The cover member may include an insulation layer. The cover member covers at least a portion of the charge during meltdown.
    Type: Application
    Filed: January 4, 2023
    Publication date: May 11, 2023
    Inventors: Paolo Tosi, Matteo Pannocchia, Roberto Scala
  • Patent number: 11299819
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 12, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20220064816
    Abstract: Crystal pulling system having a housing and a crucible assembly are disclosed. The system includes a heat shield that defines a central passage through which an ingot passes during ingot growth. A cover member is moveable within the heat shield along a pull axis. The cover member may include an insulation layer. The cover member covers at least a portion of the charge during meltdown.
    Type: Application
    Filed: August 6, 2021
    Publication date: March 3, 2022
    Inventors: Paolo Tosi, Matteo Pannocchia, Roberto Scala
  • Patent number: 11028500
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 11028499
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 10889913
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 12, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20200190690
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Publication number: 20200190689
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 18, 2020
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Publication number: 20190345629
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20190119827
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20180291524
    Abstract: Methods for growing single crystal ingots doped with volatile dopants and ingots grown according to the methods are described herein.
    Type: Application
    Filed: April 29, 2016
    Publication date: October 11, 2018
    Inventors: Soubir Basak, Gaurab Samanta, Salvador Zepeda, Christopher V. Luers, Steven L. Kimbel, Carissima Marie Hudson, Hariprasad Sreedharamurthy, Roberto Scala, Richard J. Phillips, Tirumani N. Swaminathan, Jihong Chen, Stephen Wayne Palmore, Peter Drury Wildes
  • Patent number: 10060045
    Abstract: A method of growing a monocrystalline silicon ingot is described. The method includes the steps of providing a monocrystalline ingot growing apparatus including a chamber having an internal pressure, and a crucible disposed within the chamber, preparing a silicon melt in the crucible, introducing an inert gas into the chamber from a gas inlet above the silicon melt, wherein the inert gas flows over the surface of the silicon melt and has a flow rate, introducing a volatile dopant including indium into the silicon melt, growing an indium-doped monocrystalline silicon ingot, and controlling the indium dopant concentration in the ingot by adjusting the ratio of the inert gas flow rate and the internal pressure of the chamber.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: August 28, 2018
    Assignee: Corner Star Limited
    Inventors: Roberto Scala, Luigi Bonanno, Stephan Haringer, Armando Giannattasio, Valentino Moser, Jesse Samsonov Appel, Martin Jeffrey Binns
  • Patent number: 10006145
    Abstract: A doping system for introducing liquid dopant into a melt of semiconductor or solar-grade material includes a dopant reservoir for holding dopant and a feeding tube. The dopant reservoir includes a body and a tapered end defining an opening having a smaller cross-sectional area than a cross-sectional area of the body. The feeding tube includes a first end extending from the opening of the reservoir, a second end distal from the first end, an angled tip disposed at the second end of the feeding tube, a first restriction for inhibiting the passage of solid dopant through the feeding tube, and a second restriction for controlling the flow of liquid dopant, the second restriction disposed near the second end of the feeding tube.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 26, 2018
    Assignee: Corner Star Limited
    Inventors: Stephan Haringer, Armando Giannattasio, Roberto Scala, Luigi Bonanno, Valentino Moser
  • Publication number: 20160215413
    Abstract: A method of growing a monocrystalline silicon ingot is described. The method includes the steps of providing a monocrystalline ingot growing apparatus including a chamber having an internal pressure, and a crucible disposed within the chamber, preparing a silicon melt in the crucible, introducing an inert gas into the chamber from a gas inlet above the silicon melt, wherein the inert gas flows over the surface of the silicon melt and has a flow rate, introducing a volatile dopant including indium into the silicon melt, growing an indium-doped monocrystalline silicon ingot, and controlling the indium dopant concentration in the ingot by adjusting the ratio of the inert gas flow rate and the internal pressure of the chamber.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 28, 2016
    Inventors: Roberto Scala, Luigi Bonanno, Stephan Haringer, Armando Giannattasio, Valentino Moser, Jesse Samsonov Appel, Martin Jeffrey Binns
  • Publication number: 20160017513
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 21, 2016
    Applicant: MEMC ELECTRONIC MATERIALS S.P.A.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Publication number: 20150354088
    Abstract: A doping system for introducing liquid dopant into a melt of semiconductor or solar-grade material includes a dopant reservoir for holding dopant and a feeding tube. The dopant reservoir includes a body and a tapered end defining an opening having a smaller cross-sectional area than a cross-sectional area of the body. The feeding tube includes a first end extending from the opening of the reservoir, a second end distal from the first end, an angled tip disposed at the second end of the feeding tube, a first restriction for inhibiting the passage of solid dopant through the feeding tube, and a second restriction for controlling the flow of liquid dopant, the second restriction disposed near the second end of the feeding tube.
    Type: Application
    Filed: December 31, 2013
    Publication date: December 10, 2015
    Inventors: Stephan Haringer, Armando Giannattasio, Roberto Scala, Luigi Bonanno, Valentino Moser
  • Publication number: 20150333193
    Abstract: A solar cell is provided, the solar cell fabricated from an indium-doped monocrystalline silicon wafer sliced from an ingot grown by the Czochralski method. The solar cell is characterized by high efficiency and low light induced degradation.
    Type: Application
    Filed: December 27, 2013
    Publication date: November 19, 2015
    Inventors: Jesse Samsonov Appel, Martin Jeffrey Binns, Roberto Scala, Luigi Bonanno, Stephan Haringer, Armando Giannattasio, Valentino Moser