Patents by Inventor Roberto Schupbach

Roberto Schupbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629783
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 14, 2014
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8525036
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 3, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8458899
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 11, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120256761
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Inventors: DAVID J. MITCHELL, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice Mcpherson, Bryon Westen
  • Patent number: 8220990
    Abstract: A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8223036
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120009056
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: DAVID J. MITCHELL, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander R. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120005891
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8092080
    Abstract: A circuit affixed to a moving part of an engine for sensing and processing the temperature of the part. The circuit generates a signal representative of the temperature sensed by a thermocouple (110) and amplified by an amplifier (112). A square wave oscillator (113) with a temperature sensitive capacitor (C8) varies its frequency in response to changes of a local temperature of the circuit. A chopper (114, J27) converts the output of the amplifier into an alternating current signal. The chopper is gated by the square wave oscillator and a second input is coupled to an output of the amplifier. Thus, the chopper has an output signal having a frequency representative of the local temperature and an amplitude representative of the thermocouple temperature, whereby the combined signals represent the true temperature of the part.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: January 10, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8023269
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: September 20, 2011
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20100039288
    Abstract: A circuit affixed to a moving part of an engine for sensing and processing the temperature of the part. The circuit generates a signal representative of the temperature sensed by a thermocouple (110) and amplified by an amplifier (112). A square wave oscillator (113) with a temperature sensitive capacitor (C8) varies its frequency in response to changes of a local temperature of the circuit. A chopper (114, J27) converts the output of the amplifier into an alternating current signal. The chopper is gated by the square wave oscillator and a second input is coupled to an output of the amplifier. Thus, the chopper has an output signal having a frequency representative of the local temperature and an amplitude representative of the thermocouple temperature, whereby the combined signals represent the true temperature of the part.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN
  • Publication number: 20100039290
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN
  • Publication number: 20100039289
    Abstract: A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20100039779
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: August 15, 2008
    Publication date: February 18, 2010
    Applicants: Siemens Power Generation, Inc., Arkansas Power Electronics International, Inc.
    Inventors: DAVID J. MITCHELL, ANAND A. KULKARNI, RAMESH SUBRAMANIAN, EDWARD R. ROESCH, ROD WAITS, ROBERTO SCHUPBACH, JOHN R. FRALEY, ALEXANDER B. LOSTETTER, BRICE MCPHERSON, BRYON WESTERN