Patents by Inventor Robi D. Mitra

Robi D. Mitra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230266334
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Inventor: Robi D. Mitra
  • Patent number: 11668717
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 6, 2023
    Assignee: Washington University
    Inventor: Robi D. Mitra
  • Publication number: 20200232994
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: January 14, 2020
    Publication date: July 23, 2020
    Inventor: Robi D. Mitra
  • Publication number: 20200181626
    Abstract: Among the various aspects of the present disclosure is the provision of compositions and methods for mapping transposon insertions. Applications can include mapping the locations of self-reporting transposons (SRTs) from thousands of single cells in parallel, while simultaneously measuring mRNA abundance from the same single cells; analyzing genome-associated protein (GAP) (e.g., transcription factor) binding/interactions in a small number of cells in bulk, without single cell resolution; lineage tracing; or as an improved readout for transposon mutagenesis screens.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 11, 2020
    Applicant: Washington University
    Inventors: Robi D. Mitra, Arnav Moudgil, Michael Nathaniel Wilkinson, Zongtai Qi
  • Patent number: 10571473
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: February 25, 2020
    Assignee: Washington University
    Inventor: Robi D. Mitra
  • Publication number: 20190204339
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 4, 2019
    Inventor: Robi D. Mitra
  • Patent number: 10175248
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 8, 2019
    Assignee: Washington University
    Inventor: Robi D. Mitra
  • Patent number: 10017832
    Abstract: The present invention relates to enzymes, compositions and methods for catalyzing site specific recombination at asymmetric sites.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: July 10, 2018
    Assignee: WASHINGTON UNIVERSITY
    Inventors: James J. Havranek, Chi Zhang, Joseph C. Corbo, Connie A. Myers, Robi D. Mitra, Zongtai Qi
  • Publication number: 20180156817
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 7, 2018
    Inventor: Robi D. Mitra
  • Patent number: 9880175
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 30, 2018
    Assignee: Washington University
    Inventor: Robi D. Mitra
  • Publication number: 20170153243
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: December 23, 2016
    Publication date: June 1, 2017
    Inventor: Robi D. Mitra
  • Publication number: 20170058297
    Abstract: The present invention relates to enzymes, compositions and methods for catalyzing site specific recombination at asymmetric sites.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 2, 2017
    Inventors: James J. Havranek, Chi Zhang, Joseph C. Corbo, Connie A. Myers, Robi D. Mitra, Zongtai Qi
  • Patent number: 9528984
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 27, 2016
    Assignee: Washington University
    Inventor: Robi D. Mitra
  • Publication number: 20160334394
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: December 9, 2013
    Publication date: November 17, 2016
    Applicant: WASHINGTON UNIVERSITY
    Inventor: Robi D. Mitra
  • Publication number: 20150160204
    Abstract: Methods are disclosed for identifying one or more proteins or polypeptides comprised by a sample. The methods comprise determining binding of each polypeptide with respect to each binding pool of a plurality of binding pools, wherein each binding pool comprises one or more probes which bind a structure comprised by a protein or polypeptide. In some aspects, polypeptides can be denatured and separated into individual polypeptide strands and immobilized on a solid support prior to determining binding of the binding pools. A protein, polypeptide or polypeptide strand can be identified by searching, in at least one database, for a protein or polypeptide sequence comprising binding pool targets either identical to or most similar to the binding pool targets comprised by the protein, polypeptide or polypeptide strand to be identified. Kits for identifying proteins, polypeptides and polypeptide strands are also disclosed.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 11, 2015
    Applicant: WASHINGTON UNIVERSITY
    Inventor: Robi D. Mitra
  • Patent number: 7785790
    Abstract: Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: August 31, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Robi D. Mitra
  • Publication number: 20030124594
    Abstract: Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
    Type: Application
    Filed: October 31, 2002
    Publication date: July 3, 2003
    Applicant: President & Fellows Of Harvard College
    Inventors: George M. Church, Robi D. Mitra
  • Patent number: 6511803
    Abstract: Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: January 28, 2003
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Robi D. Mitra