Patents by Inventor Robin Alexander KRUEGER

Robin Alexander KRUEGER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230201970
    Abstract: A substrate comprises glass, sapphire, silicon and/or aluminosilicate, and has at least one recess or through-opening. The at least one recess or through-opening is formed by anisotropic removal of substrate material by etching a portion of the substrate that has been modified by a pulse of laser radiation in a direction of a thickness of the substrate. The modified portion of the substrate extends along a beam axis of the laser radiation. The pulse of laser radiation was applied with a focus extending from a first focal depth positioned past one side of the substrate to a second focal depth located at an opposite side of the substrate.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 11618104
    Abstract: A device for modifying a region of a substrate includes a laser radiation source for pulsed laser radiation. A transmissive medium having a higher intensity-dependent refraction index than air is arranged between a laser machining head and the substrate such that an individual pulse of the pulsed laser radiation from the laser machining head is deflected through the transmissive medium and across a thickness of the substrate from an original focal depth to a focal depth different from the original focal depth to modify the substrate along a beam axis of the laser radiation in a region of a recess or through-opening to be formed in the substrate without removing an amount of the substrate material necessary to form the recess or through-opening. A length between the focal depths is greater than and extends across the thickness of the substrate.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: April 4, 2023
    Assignee: LPKF LASER & ELECTRONICS SE
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 11613803
    Abstract: Use of a laser-activatable component in a composition and/or use of a composition that includes the laser-activatable component, during laser transfer printing, characterized in that the laser-activatable component is activated by laser irradiation during use in such a way that the viscosity and/or the elasticity and/or the tack of the composition increase(s) due to an increase in temperature of the composition, wherein the laser-activatable component is a polymer made up of the groups comprising polyethylene glycol, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol, polyacrylate, polyester, or copolymers of these polymers or blends.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: March 28, 2023
    Assignee: LPKF Laser & Electronics AG
    Inventors: Robin Alexander Krüger, Malte Schulz-Ruhtenberg, Marc Hüske
  • Publication number: 20230026070
    Abstract: A method produces a composite from a conductive structure, a carrier made of non-conductive carrier material made from thermosetting plastic, and at least one electronic component by laser radiation. The non-conductive carrier material having an additive, which is configured to subsequently form a catalytically active species in an electroless metallization bath by irradiation with the laser radiation. The method includes: forming the conductive structure being by irradiation using pulsed laser radiation having a pulse duration of less than 100 picoseconds and subsequent electroless metallization. A pulse repetition rate is set such that consecutive pulses of the pulsed laser radiation in an area of the additive to be activated or an additive area are diverted mutually overlapping onto the additive or the additive area.
    Type: Application
    Filed: October 1, 2020
    Publication date: January 26, 2023
    Inventors: Bernd Roesener, Robin Alexander Krueger, Andreas Fischer
  • Patent number: 11401194
    Abstract: An aspect of the invention provides a device, comprising: a laser machining head configured to deflect laser radiation onto an optical system comprising a substrate, the device being configured to carry out a method for separating the substrate using the optical system, the optical system being configured to provide the laser radiation, a thickness of the substrate not exceeding 2 mm in a region of a separating line, the method comprising: applying pulsed laser radiation having a pulse duration (t) to a substrate material of the substrate using the optical system, the substrate material being transparent at least in part to a laser wavelength of the pulsed laser radiation, the pulsed laser radiation being focused using the optical system at an original focal depth (f1), an intensity of the pulsed laser radiation leading to a modification of the substrate along a beam axis (Z) of the pulsed laser radiation.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: August 2, 2022
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Publication number: 20210189544
    Abstract: Use of a laser-activatable component in a composition and/or use of a composition that includes the laser-activatable component, during laser transfer printing, characterized in that the laser-activatable component is activated by laser irradiation during use in such a way that the viscosity and/or the elasticity and/or the tack of the composition increase(s) due to an increase in temperature of the composition, wherein the laser-activatable component is a polymer made up of the groups comprising polyethylene glycol, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol, polyacrylate, polyester, or copolymers of these polymers or blends.
    Type: Application
    Filed: November 9, 2020
    Publication date: June 24, 2021
    Inventors: Robin Alexander KRÜGER, Malte SCHULZ-RUHTENBERG, Marc HÜSKE
  • Publication number: 20200189039
    Abstract: A device for modifying a region of a substrate includes a laser radiation source for pulsed laser radiation. A transmissive medium having a higher intensity-dependent refraction index than air is arranged between a laser machining head and the substrate such that an individual pulse of the pulsed laser radiation from the laser machining head is deflected through the transmissive medium and across a thickness of the substrate from an original focal depth to a focal depth different from the original focal depth to modify the substrate along a beam axis of the laser radiation in a region of a recess or through-opening to be formed in the substrate without removing an amount of the substrate material necessary to form the recess or through-opening. A length between the focal depths is greater than and extends across the thickness of the substrate.
    Type: Application
    Filed: February 24, 2020
    Publication date: June 18, 2020
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 10610971
    Abstract: A method for producing a recess or through-opening in a substrate includes applying pulsed laser radiation to the substrate. The laser radiation is focused using an optical system at an original focal depth and, by non-linear self-focusing within the pulse duration of an individual pulse, is also focused by the optical system at a focal depth different from the original focal depth. A difference between the focal depths corresponds to or is greater than the longitudinal extent of the recess or though-opening to be produced. The laser radiation modifies the substrate along a beam axis of the laser radiation in the region of the recess or through-opening, but does not result in removal of the substrate material necessary to form the recess or the through-opening. The substrate material in the modified region is anisotropically removed to produce the recess or through-opening in the substrate.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: April 7, 2020
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 9924601
    Abstract: A method for the at least portion-wise and adhesive metallization of a non-conductive workpiece includes introducing periodic microstructures into the workpiece in regions to be metallized, within an area to be metallized that is enclosed by one or more limiting lines, by molding a tool that is microstructured in accordance with the regions to be metallized within a molding area.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: March 20, 2018
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Roman Ostholt, Robin Alexander Krueger, Bernd Roesener, Eugen Haumann
  • Publication number: 20170341971
    Abstract: An aspect of the invention provides a device, comprising: a laser machining head configured to deflect laser radiation onto an optical system comprising a substrate, the device being configured to carry out a method for separating the substrate using the optical system, the optical system being configured to provide the laser radiation, a thickness of the substrate not exceeding 2 mm in a region of a separating line, the method comprising: applying pulsed laser radiation having a pulse duration (t) to a substrate material of the substrate using the optical system, the substrate material being transparent at least in part to a laser wavelength of the pulsed laser radiation, the pulsed laser radiation being focused using the optical system at an original focal depth (f1), an intensity of the pulsed laser radiation leading to a modification of the substrate along a beam axis (Z) of the pulsed laser radiation.
    Type: Application
    Filed: August 21, 2017
    Publication date: November 30, 2017
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 9764978
    Abstract: A method and device for separating a substrate with a laser beam. The duration of the laser beam's effect is extremely short, so the substrate is only modified concentrically about the laser beam axis (Z) without it degrading the substrate material. While the laser beam acts upon the substrate, the substrate moves relative to a laser machining head, producing plural filament-type modifications along a separating surface to be incorporated. The laser beam is initially diverted by a transmission medium having a higher intensity dependent refractive index than air, then reaches the substrate. The non-constant pulsed laser intensity increases to a maximum over the temporal course of the single pulse, then reduces, and the refractive index changes. The laser beam focus point moves between the substrate's outer surfaces along the beam axis (Z), reaching the desired modification along the beam axis (Z) without correcting the laser machining head in the z-axis.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: September 19, 2017
    Assignee: LPKF LASER & ELECTRONICS AG
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Patent number: 9676927
    Abstract: This invention relates to products of aqueous and other chemical synthetic routes for encapsulation of a core material with an inorganic shell and finished compositions of a core-shell particulate material for application in thermoplastic, thermoset, and coatings resins prior to compounding or application or subsequent thermal processing steps. Disclosed is a composition of particles containing a shell of inorganic oxides or mixed-metal inorganic oxides and a core material of complex inorganic colored pigment, laser direct structuring additives, laser marking, or other beneficial metal oxides, metal compounds, or mixed-metal oxide materials, wherein the shell material is comprised of any single oxide or combination of oxides is taught. Preferred elements of composition for the shell are oxides and silicates of B, Ni, Zn, Al, Zr, Si, Sn, Bi, W, Mo, Cr, Mg, Mn, Ce, Ti, and Ba (or mixtures thereof).
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: June 13, 2017
    Assignees: The Shepherd Color Company, LPKF Laser & Electronics AG
    Inventors: Michael D. Musick, David Ziemnik, James P. White, Robin Alexander Krüger, Bernd Rösener, Malte Sebastian Fengler
  • Publication number: 20160059359
    Abstract: A method and device can create, with a laser beam, plural recesses in a substrate useful as an interposer, and a substrate produced thereby. A laser beam may be directed to the surface of a substrate. The duration of the laser beam effect is extremely short such that the substrate is only modified concentrically about the laser beam axis without reaching a substrate material recess. The laser beam is initially diverted by a transmission medium having a higher intensity-dependent refractive index than air, and subsequently reaching the substrate. Non-constant pulsed laser intensity increases to a maximum over the temporal course of the single pulse, then reduces; the refractive index also changes. The focus point of the laser beam moves between the outer surfaces of the substrate along the beam axis such that it reaches the desired modification along the beam axis without correcting the laser processing head in the z-axis.
    Type: Application
    Filed: April 3, 2014
    Publication date: March 3, 2016
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Publication number: 20160060156
    Abstract: A method and device for separating a substrate with a laser beam. The duration of the laser beam's effect is extremely short, so the substrate is only modified concentrically about the laser beam axis (Z) without it degrading the substrate material. While the laser beam acts upon the substrate, the substrate moves relative to a laser machining head, producing plural filament-type modifications along a separating surface to be incorporated. The laser beam is initially diverted by a transmission medium having a higher intensity dependent refractive index than air, then reaches the substrate. The non-constant pulsed laser intensity increases to a maximum over the temporal course of the single pulse, then reduces, and the refractive index changes. The laser beam focus point moves between the substrate's outer surfaces along the beam axis (Z), reaching the desired modification along the beam axis (Z) without correcting the laser machining head in the z-axis.
    Type: Application
    Filed: April 3, 2014
    Publication date: March 3, 2016
    Inventors: Robin Alexander Krueger, Norbert Ambrosius, Roman Ostholt
  • Publication number: 20160037650
    Abstract: A method for the at least portion-wise and adhesive metallisation of a non-conductive workpiece includes introducing periodic microstructures into the workpiece in regions to be metallised, within an area to be metallised that is enclosed by one or more limiting lines, by moulding a tool that is microstructured in accordance with the regions to be metallised within a moulding area.
    Type: Application
    Filed: December 3, 2013
    Publication date: February 4, 2016
    Inventors: Roman OSTHOLT, Robin Alexander KRUEGER, Bernd ROESENER, Eugen HAUMANN
  • Publication number: 20160002791
    Abstract: A method for producing an electrically conductive structure, e.g., a conducting track, on a non-conductive substrate material, having an additive (1) having at least one metal compound. The substrate material may be irradiated using a laser to selectively activate the metal compounds, for example inorganic metal compounds, contained in the additive (1). The metal seeds formed by the activation are then metallized to create the electrically conductive structure on the substrate material. Because the additive (1) has a preferably full-surface coating before the additive is introduced into the substrate material, such that the additive (1) is reduced and the coating is oxidized by the laser activation, the reaction partners necessary for the required chemical reaction with the additive (1) are provided by the coating. Because of the thereby significantly reduced interaction with the substrate material, the limitation to certain plastics or plastic groups also is lifted.
    Type: Application
    Filed: December 6, 2013
    Publication date: January 7, 2016
    Inventors: Robin Alexander KRÜGER, Bernd RÖSENER, Wolfgang JOHN, Arne SCHNOOR, Roman OSTHOLT
  • Publication number: 20150291778
    Abstract: This invention relates to products of aqueous and other chemical synthetic routes for encapsulation of a core material with an inorganic shell and finished compositions of a core-shell particulate material for application in thermoplastic, thermoset, and coatings resins prior to compounding or application or subsequent thermal processing steps. Disclosed is a composition of particles containing a shell of inorganic oxides or mixed-metal inorganic oxides and a core material of complex inorganic colored pigment, laser direct structuring additives, laser marking, or other beneficial metal oxides, metal compounds, or mixed-metal oxide materials, wherein the shell material is comprised of any single oxide or combination of oxides is taught. Preferred elements of composition for the shell are oxides and silicates of B, Ni, Zn, Al, Zr, Si, Sn, Bi, W, Mo, Cr, Mg, Mn, Ce, Ti, and Ba (or mixtures thereof).
    Type: Application
    Filed: March 23, 2015
    Publication date: October 15, 2015
    Inventors: Michael D. MUSICK, David ZIEMNIK, James P. WHITE, Robin Alexander KRÜGER, Bernd RÖSENER, Malte Sebastian FENGLER