Patents by Inventor Robin EDWARDS

Robin EDWARDS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250145713
    Abstract: This disclosure provides a method for treating a subject afflicted with tumor, which method comprises administering to the subject an antibody or an antigen-binding portion thereof that specifically binds to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, the tumor is derived from a non-small cell lung cancer (NSCLC). In some embodiments, the tumor expresses Programmed Death Ligand 1. In some embodiments, the subject carries a wild-type STK11 gene.
    Type: Application
    Filed: January 9, 2025
    Publication date: May 8, 2025
    Applicant: Bristol-Myers Squibb Company
    Inventors: Robin EDWARDS, William J. GEESE, Danielle M. GREENAWALT
  • Publication number: 20250043006
    Abstract: The invention provides a method of treating a tumor in a human patient comprising (i) identifying a patient as having a LAG-3 positive tumor and (ii) administering to the patient a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor, or an anti-CTLA4 antibody. In some embodiments, the method further comprises identifying the patient as having a LAG-3 positive PD-L1 positive tumor. In some embodiments, the LAG-3 inhibitor is an anti-LAG-3 antibody and the PD-1 pathway inhibitor is an anti-PD-1 antibody. The methods of the invention can improve response rates to treatment with a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, or a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor.
    Type: Application
    Filed: June 17, 2024
    Publication date: February 6, 2025
    Applicant: Bristol-Myers Squibb Company
    Inventors: James NOVOTNY, Nils LONBERG, Cyrus HEDVAT, Raphael CLYNES, Darren LOCKE, John P. COGSWELL, Jeffrey JACKSON, Christopher HARBISON, Robin EDWARDS
  • Publication number: 20240092911
    Abstract: The invention provides a method of treating a tumor in a human patient comprising (i) identifying a patient as having a LAG-3 positive tumor and (ii) administering to the patient a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor, or an anti-CTLA4 antibody. In some embodiments, the method further comprises identifying the patient as having a LAG-3 positive PD-L1 positive tumor. In some embodiments, the LAG-3 inhibitor is an anti-LAG-3 antibody and the PD-1 pathway inhibitor is an anti-PD-1 antibody. The methods of the invention can improve response rates to treatment with a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, or a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 21, 2024
    Applicant: Bristol-Myers Squibb Company
    Inventors: James NOVOTNY, Nils LONBERG, Cyrus HEDVAT, Raphael CLYNES, Darren LOCKE, John P. COGSWELL, Jeffrey JACKSON, Christopher HARBISON, Robin EDWARDS
  • Publication number: 20230306762
    Abstract: Described herein are methods and computer systems for classification of CD8 T-cell topology using artificial intelligence and machine learning. A plurality of histology images of tissue samples in a plurality of patients are received by a computer system. An image analysis of the plurality of histology images is performed to obtain a CD8+ T-cell abundance in the tumor parenchyma and stroma in each of the plurality of histology images. A machine learning algorithm is then trained using results of the image analysis and the CD8+ T-cell abundance in the tumor parenchyma and stroma. Based on the training, a machine learning feature space comprising a plurality of classifications is generated, and boundaries between the plurality of classifications in the machine learning feature space are identified.
    Type: Application
    Filed: August 31, 2021
    Publication date: September 28, 2023
    Applicant: Bristol-Myers Squibb Company
    Inventors: George C. LEE, Robin EDWARDS, Scott ELY, Daniel N. COHEN, John B. WOJCIK, Vipul A. BAXI, Dimple PANDYA, Jimena TRILLO-TINOCO, Benjamin J. CHEN, Andrew FISHER, Falon GRAY
  • Publication number: 20230303700
    Abstract: The present disclosure provides methods of identifying a subject suitable for an anti-PD-?PD-L1 antagonist therapy comprising measuring assay CD8 localization and PD-L1 expression in a tumor sample obtained from the subject. In some aspects, method further comprises administering (i) an anti-PD-?PD-L1 antagonist therapy or (ii) an anti-PD-?PD-L1 antagonist and anti-CT-LA-4 antagonist combination therapy to a subject identified as having a tumor exhibiting an excluded CD8 localization phenotype, wherein the tumor is PD-L1 negative.
    Type: Application
    Filed: August 31, 2021
    Publication date: September 28, 2023
    Applicant: Bristol-Myers Squibb Company
    Inventors: George C. LEE, Robin EDWARDS, Scott ELY, Daniel N. COHEN, John B. WOJCIK, Vipul A. BAXI, Dimple PANDYA, Jimena TRILLO-TINOCO, Benjamin J. CHEN, Andrew FISHER, Falon GRAY
  • Publication number: 20230279114
    Abstract: This disclosure provides a method for treating a subject afflicted with tumor, which method comprises administering to the subject an antibody or an antigen-binding portion thereof that specifically binds to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, the tumor is derived from a non-small cell lung cancer (NSCLC). In some embodiments, the tumor expresses Programmed Death Ligand 1. In some embodiments, the subject carries a wild-type STK11 gene.
    Type: Application
    Filed: January 30, 2023
    Publication date: September 7, 2023
    Applicant: Bristol-Myers Squibb Company
    Inventors: Robin EDWARDS, William J. GEESE, Danielle M. GREENAWALT
  • Publication number: 20220348653
    Abstract: The disclosure provides LAG-3 antagonists and methods comprising the same for treating a cancer in a subject based on a LAG-3 density score and/or a LAG-3 proportion score in a tumor sample from the subject. The disclosure also provides methods of identifying a subject responsive to a LAG-3 antagonist therapy.
    Type: Application
    Filed: September 22, 2020
    Publication date: November 3, 2022
    Applicant: Bristol-Myers Squibb Company
    Inventors: Cyrus HEDVAT, Robin EDWARDS, George C. LEE, Vipual Atulkumar BAXI
  • Publication number: 20220315657
    Abstract: This disclosure provides a method for treating a subject afflicted with tumor, which method comprises administering to the subject an antibody or an antigen-binding portion thereof that specifically binds to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, the tumor is derived from a non-small cell lung cancer (NSCLC). In some embodiments, the tumor expresses Programmed Death Ligand 1 (PD-L1), Serine/Threonine Kinase 11 (STK11), or both PD-L1 and STK11.
    Type: Application
    Filed: March 21, 2022
    Publication date: October 6, 2022
    Applicant: Bristol-Myers Squibb Company
    Inventors: Robin EDWARDS, Han CHANG, Michele CLEARY, Peter M. SZABO, Joseph Daniel SZUSTAKOWSKI, Patrik VITAZKA
  • Publication number: 20210261666
    Abstract: The invention provides a method of treating a tumor in a human patient comprising (i) identifying a patient as having a LAG-3 positive tumor and (ii) administering to the patient a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor, or an anti-CTLA4 antibody. In some embodiments, the method further comprises identifying the patient as having a LAG-3 positive PD-Ll positive tumor. In some embodiments, the LAG-3 inhibitor is an anti-LAG-3 antibody and the PD-1 pathway inhibitor is an anti-PD-1 antibody. The methods of the invention can improve response rates to treatment with a PD-1 pathway inhibitor, a combination of a PD1 pathway inhibitor and an immune checkpoint inhibitor, or a combination of a LAG-3 inhibitor and a PD-1 pathway inhibitor.
    Type: Application
    Filed: May 30, 2018
    Publication date: August 26, 2021
    Applicant: Bristol-Myers Squibb Company
    Inventors: James NOVOTNY, JR., Nils LONBERG, Cyrus HEDVAT, Raphael CLYNES, Darren LOCKE, John P. COGSWELL, Jeffrey JACKSON, Christopher HARBISON, Robin EDWARDS
  • Publication number: 20200325226
    Abstract: This disclosure provides a method for treating a subject afflicted with tumor, which method comprises administering to the subject an antibody or an antigen-binding portion thereof that specifically binds to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, the tumor is derived from a non-small cell lung cancer (NSCLC). In some embodiments, the tumor expresses Programmed Death Ligand 1 (PD-L1), Serine/Threonine Kinase 11 (STK11), or both PD-L1 and STK11.
    Type: Application
    Filed: June 2, 2017
    Publication date: October 15, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Robin EDWARDS, Han CHANG, Michele CLEARY, Peter M. SZABO, Joseph D. SZUSTAKOWSKI, Patrik VITAZKA
  • Publication number: 20200109204
    Abstract: This disclosure provides a method for treating a subject afflicted with tumor, which method comprises administering to the subject an antibody or an antigen-binding portion thereof that specifically binds to a Programmed Death-1 (PD-1) receptor and inhibits PD-1 activity. In some embodiments, the tumor is derived from a non-small cell lung cancer (NSCLC). In some embodiments, the tumor expresses Programmed Death Ligand 1. In some embodiments, the subject carries a wild-type STK11 gene.
    Type: Application
    Filed: June 1, 2018
    Publication date: April 9, 2020
    Applicant: Bristol-Myers Squibb Company
    Inventors: Robin EDWARDS, William J. GEESE, Danielle M. GREENAWALT