Patents by Inventor Robin Roelofs

Robin Roelofs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220162751
    Abstract: A substrate processing apparatus having a tube, a closed liner lining the interior surface of the tube, a plurality of gas injectors to provide a gas to an inner space of the liner, and, a gas exhaust duct to remove gas from the inner space is disclosed. The liner may have a substantially cylindrical wall delimited by a liner opening at a lower end and being substantially closed for gases above the liner opening. The apparatus may have a boat constructed and arranged moveable into the inner space via the liner opening and provided with a plurality of substrate holders for holding a plurality of substrates over a substrate support length in the inner space. Each of the gas injectors may have a single exit opening at the top and the exit openings of the plurality of injectors are substantially equally divided over the substrate support length.
    Type: Application
    Filed: November 18, 2021
    Publication date: May 26, 2022
    Inventors: Kornelius Haanstra, Lucian C. Jdira, Chris G.M. de Ridder, Robin Roelofs, Werner Knaepen, Herbert Terhorst
  • Publication number: 20200071828
    Abstract: In accordance with some embodiments herein, methods and apparatuses for deposition of thin films are provided.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Bert Jongbloed, Delphine Longrie, Robin Roelofs, Lucian Jdira, Suvi Haukka, Antti Niskanen, Jun Kawahara, Yukihiro Mori
  • Publication number: 20170029948
    Abstract: In accordance with some embodiments herein, methods and apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other, and the substrate can be contacted with different reactants at different temperatures so as to minimize or prevent undesired gas phase reactions, chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Bert Jongbloed, Delphine Longrie, Robin Roelofs, Lucian Jdira, Suvi Juhani Haukka, Antti Niskanen, Jun Kawahara, Yukihiro Mori
  • Patent number: 9552979
    Abstract: A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 24, 2017
    Assignee: ASM IP HOLDING B.V.
    Inventors: Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Peter Zagwijn, Hessel Sprey, Cornelius A. van der Jeugd, Marinus Josephus de Blank, Robin Roelofs, Qi Xie, Jan Willem Maes
  • Patent number: 9520562
    Abstract: The disclosed technology generally relates to semiconductor devices, and relates more particularly to resistive random access memory devices and methods of making the same. In one aspect, a method of forming a resistive random access memory cell of a random access memory device includes forming a first electrode and forming a resistive switching material comprising an oxide of a pnictogen element by atomic layer deposition. The method additionally includes forming a metallic layer comprising the pnictogen element by atomic layer deposition (ALD). The resistive switching material is interposed between the first electrode and the metallic layer.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 13, 2016
    Assignee: ASM IP Holding B.V.
    Inventors: Qi Xie, Jan Willem Maes, Tom Blomberg, Marko Tuominen, Suvi Haukka, Robin Roelofs, Jacob Woodruff
  • Patent number: 9472757
    Abstract: The disclosed technology generally relates to the field of semiconductor processing and more particularly to resistive random access memory and methods for manufacturing such memory. In one aspect, a method of fabricating a memory cell includes providing a substrate and providing a first electrode on the substrate. The method additionally includes depositing, via atomic layer deposition, a resistive switching material on the first electrode, wherein the resistive switching material comprises an oxide comprising a pnictogen chosen from the group consisting of As, Bi, Sb, and P. The resistive switching material may be doped, e.g., with Sb or an antimony-metal alloy. A second electrode may be formed over and in contact with the resistive switching material.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: October 18, 2016
    Assignee: ASM IP Holding B.V.
    Inventors: Qi Xie, Jan Willem Maes, Tom Blomberg, Marko Tuominen, Suvi Haukka, Robin Roelofs, Jacob Woodruff
  • Publication number: 20150021540
    Abstract: The disclosed technology generally relates to the field of semiconductor processing and more particularly to resistive random access memory and methods for manufacturing such memory. In one aspect, a method of fabricating a memory cell includes providing a substrate and providing a first electrode on the substrate. The method additionally includes depositing, via atomic layer deposition, a resistive switching material on the first electrode, wherein the resistive switching material comprises an oxide comprising a pnictogen chosen from the group consisting of As, Bi, Sb, and P. The resistive switching material may be doped, e.g., with Sb or an antimony-metal alloy. A second electrode may be formed over and in contact with the resistive switching material.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: Qi Xie, Jan Willem Maes, Tom Blomberg, Marko Tuominen, Suvi Haukka, Robin Roelofs, Jacob Woodruff
  • Publication number: 20150021537
    Abstract: The disclosed technology generally relates to semiconductor devices, and relates more particularly to resistive random access memory devices and methods of making the same. In one aspect, a method of forming a resistive random access memory cell of a random access memory device includes forming a first electrode and forming a resistive switching material comprising an oxide of a pnictogen element by atomic layer deposition. The method additionally includes forming a metallic layer comprising the pnictogen element by atomic layer deposition (ALD). The resistive switching material is interposed between the first electrode and the metallic layer.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: Qi XIE, Jan Willem MAES, Tom BLOMBERG, Marko TUOMINEN, Suvi HAUKKA, Robin ROELOFS, Jacob WOODRUFF
  • Publication number: 20140357090
    Abstract: A process for depositing aluminum nitride is disclosed. The process comprises providing a plurality of semiconductor substrates in a batch process chamber and depositing an aluminum nitride layer on the substrates by performing a plurality of deposition cycles without exposing the substrates to plasma during the deposition cycles. Each deposition cycle comprises flowing an aluminum precursor pulse into the batch process chamber, removing the aluminum precursor from the batch process chamber, and removing the nitrogen precursor from the batch process chamber after flowing the nitrogen precursor and before flowing another pulse of the aluminum precursor. The process chamber may be a hot wall process chamber and the deposition may occur at a deposition pressure of less than 1 Torr.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 4, 2014
    Inventors: Werner Knaepen, Bert Jongbloed, Dieter Pierreux, Peter Zagwijn, Hessel Sprey, Cornelius A. van der Jeugd, Marinus Josephus de Blank, Robin Roelofs, Qi Xie, Jan Willem Maes