Patents by Inventor Roc Berenguer-Pérez
Roc Berenguer-Pérez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11057062Abstract: An example method according to some embodiments includes receiving, from a modulator, a phase-modulated carrier output signal having a carrier center frequency that is a non-integer multiple of a desired carrier center frequency; generating, by an injection-locked ring oscillator (ILRO), a plurality of phases of the phase-modulated carrier output signal at a plurality of outputs of the ILRO; generating a decoupled fractional frequency output signal by sequentially selecting, using a multiplexer, successive outputs of the plurality of outputs corresponding to successive phases of the plurality of phases, the decoupled fractional frequency output signal having a center frequency equal to an integer multiple of the desired carrier center frequency; and generating, based on the decoupled fractional frequency output signal, a desired phase-modulated carrier output signal that is decoupled from the modulator, the desired phase-modulated carrier output signal having a generated carrier center frequency equal to theType: GrantFiled: April 7, 2020Date of Patent: July 6, 2021Assignee: INNOPHASE INC.Inventors: Roc Berenguer Perez, Yang Xu
-
Publication number: 20200395961Abstract: An example method according to some embodiments includes receiving, from a modulator, a phase-modulated carrier output signal having a carrier center frequency that is a non-integer multiple of a desired carrier center frequency; generating, by an injection-locked ring oscillator (ILRO), a plurality of phases of the phase-modulated carrier output signal at a plurality of outputs of the ILRO; generating a decoupled fractional frequency output signal by sequentially selecting, using a multiplexer, successive outputs of the plurality of outputs corresponding to successive phases of the plurality of phases, the decoupled fractional frequency output signal having a center frequency equal to an integer multiple of the desired carrier center frequency; and generating, based on the decoupled fractional frequency output signal, a desired phase-modulated carrier output signal that is decoupled from the modulator, the desired phase-modulated carrier output signal having a generated carrier center frequency equal to theType: ApplicationFiled: April 7, 2020Publication date: December 17, 2020Inventors: Roc Berenguer Perez, Yang Xu
-
Patent number: 10720931Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: GrantFiled: April 15, 2019Date of Patent: July 21, 2020Assignee: INNOPHASE INC.Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Patent number: 10651876Abstract: An example method according to some embodiments includes receiving, from a modulator, a phase-modulated carrier output signal having a carrier center frequency that is a non-integer multiple of a desired carrier center frequency; generating, by an injection-locked ring oscillator (ILRO), a plurality of phases of the phase-modulated carrier output signal at a plurality of outputs of the ILRO; generating a decoupled fractional frequency output signal by sequentially selecting, using a multiplexer, successive outputs of the plurality of outputs corresponding to successive phases of the plurality of phases, the decoupled fractional frequency output signal having a center frequency equal to an integer multiple of the desired carrier center frequency; and generating, based on the decoupled fractional frequency output signal, a desired phase-modulated carrier output signal that is decoupled from the modulator, the desired phase-modulated carrier output signal having a generated carrier center frequency equal to theType: GrantFiled: June 12, 2019Date of Patent: May 12, 2020Assignee: Innophase Inc.Inventors: Roc Berenguer Perez, Yang Xu
-
Publication number: 20190238146Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: ApplicationFiled: April 15, 2019Publication date: August 1, 2019Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Patent number: 10326457Abstract: Clock generation from an external reference by generating a reference clock gating signal using a reference clock gating circuit; enabling a ring-oscillator-injection mode using the reference clock gating signal to disable a first buffer of a ring oscillator and to enable a reference clock injection buffer, the first buffer and the injection buffer having parallel connected outputs that connect to a next buffer input; receiving a reference clock transition of a reference clock signal at the injection buffer and injecting it into the next buffer; and enabling a ring-oscillator-closed-loop mode by using the reference clock gating signal to enable the first buffer and to disable the reference clock injection buffer.Type: GrantFiled: August 11, 2017Date of Patent: June 18, 2019Assignee: Innophase, Inc.Inventor: Roc Berenguer Perez
-
Patent number: 10320403Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: GrantFiled: June 5, 2017Date of Patent: June 11, 2019Assignee: Innophase Inc.Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20190052280Abstract: Clock generation from an external reference by generating a reference clock gating signal using a reference clock gating circuit; enabling a ring-oscillator-injection mode using the reference clock gating signal to disable a first buffer of a ring oscillator and to enable a reference clock injection buffer, the first buffer and the injection buffer having parallel connected outputs that connect to a next buffer input; receiving a reference clock transition of a reference clock signal at the injection buffer and injecting it into the next buffer; and enabling a ring-oscillator-closed-loop mode by using the reference clock gating signal to enable the first buffer and to disable the reference clock injection buffer.Type: ApplicationFiled: August 11, 2017Publication date: February 14, 2019Inventor: Roc Berenguer Perez
-
Publication number: 20170324420Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: ApplicationFiled: June 5, 2017Publication date: November 9, 2017Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20170163272Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: ApplicationFiled: December 2, 2015Publication date: June 8, 2017Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20170163273Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: ApplicationFiled: December 2, 2015Publication date: June 8, 2017Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Patent number: 9673828Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: GrantFiled: December 2, 2015Date of Patent: June 6, 2017Assignee: INNOPHASE, INC.Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Patent number: 9673829Abstract: Wideband polar receivers and method of operation are described. A phase-modulated input signal is received at a polar receiver that includes an injection-locked oscillator. The injection-locked oscillator includes a plurality of injection points. Based on the frequency of the input signal, a particular Nth harmonic is selected, and the input signal is injected at the set of injection points corresponding to the selected Nth harmonic. The injection-locked oscillator generates an oscillator output signal, and the phase of the input signal is determined from the phase of the oscillator output signal. In some embodiments, the oscillator output signal is frequency-multiplied by N, mixed with the input signal, and filtered for use in amplitude detection. The input signal is decoded based on the phase and amplitude information.Type: GrantFiled: December 2, 2015Date of Patent: June 6, 2017Assignee: INNOPHASE, INC.Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20170131222Abstract: The invention relates to a system and method for measuring a physical quantity wirelessly, with a emitter and a passive receiver. On the emitter side, the system comprises an RFID emitter in communication with the RFID receiver. On the receiver side, the system comprises an RFID receiver module, energy storage means supplied by the receiver module, a monitoring module for monitoring the stored energy, a microcontroller module with analog-to-digital conversion means, a measurement module, and an enabling module for enabling the microcontroller module. By means of the monitoring module, the system is adapted to taking periodic measurements only when requested, such that even though peak consumptions are relatively high while taking the measurement, mean consumption remains at values that are low enough to supply the measurement module with the energy stored in the energy storage means without requiring any auxiliary energy source.Type: ApplicationFiled: March 23, 2015Publication date: May 11, 2017Inventors: Ibon ZALBIDE AGIRREZABALAGA, Eduardo D'ENTREMONT JIMÉNEZ, Iago José REDONDO FARIAS, Iñaki GALARRAGA MARTÍN, Ainara JIMÉNEZ IRASTORZA, Roc BERENGUER PÉREZ
-
Patent number: 9497055Abstract: Circuitry and methods are described for digital signal demodulation. In a polar receiver, a modulated radio-frequency input signal is provided to frequency division circuitry, which may include a harmonic injection-locked oscillator (ILO). The phase of the frequency-divided output is measured using a self-triggered time-to-digital converter (TDC), which may be a Vernier TDC. A subtractor subtracts a period offset from the output of the TDC to generate an offset digital time output, and a digital integrator integrates the offset digital time output. The integrated time signal represents the phase of the radio-frequency input signal and can be used to determine a symbol, such as a phase-shift keying (PSK) or quadrature amplitude modulation (QAM) symbol, conveyed by the modulated radio-frequency input signal.Type: GrantFiled: February 27, 2015Date of Patent: November 15, 2016Assignee: INNOPHASE INC.Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20160254934Abstract: Circuitry and methods are described for digital signal demodulation. In a polar receiver, a modulated radio-frequency input signal is provided to frequency division circuitry, which may include a harmonic injection-locked oscillator (ILO). The phase of the frequency-divided output is measured using a self-triggered time-to-digital converter (TDC), which may be a Vernier TDC. A subtractor subtracts a period offset from the output of the TDC to generate an offset digital time output, and a digital integrator integrates the offset digital time output. The integrated time signal represents the phase of the radio-frequency input signal and can be used to determine a symbol, such as a phase-shift keying (PSK) or quadrature amplitude modulation (QAM) symbol, conveyed by the modulated radio-frequency input signal.Type: ApplicationFiled: February 27, 2015Publication date: September 1, 2016Inventors: Yang Xu, Sara Munoz Hermoso, Roc Berenguer Perez
-
Publication number: 20100040191Abstract: The invention relates to an integrated temperature sensor (1) comprising: means (2000) for generating a pulse train (DATA_IN) at an oscillation frequency, means (3000) for counting the number of pulses during a fixed period of time independent of a temperature to be measured (T) and for generating a plurality of bits (b11, b10, . . . , b0) indicating the number of pulses in the pulse train (DATA_IN), and means (4000) for generating a serial digital signal (DATA_OUT) from said bits (b11, b10, . . . , b0), in which the means (2000) for generating a pulse train (DATA_IN) include a plurality of logic gates (2410, 2420, 2430, 2440, 2450) which can introduce a delay dependent on the temperature to be measured (T), said means (2000) generating a pulse train (DATA_IN) the oscillation frequency of which is dependent on said temperature to be measured (T). The invention also relates to a temperature measurement method and to a transponder for a wireless system.Type: ApplicationFiled: October 9, 2006Publication date: February 18, 2010Inventors: Aritz Ubarretxena Belandia, Roc Berenguer-Pérez, César Matinez Antón, Daniel Egurrola López, Javier Hernández De Miguel