Patents by Inventor Rocco Paciello

Rocco Paciello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130046118
    Abstract: The present invention relates to a particularly economic overall method for producing menthol, specifically for producing optically active, essentially enantiomerically and diastereomerically pure L-menthol and racemic menthol, starting from the starting material citral which is available inexpensively on an industrial scale. The method comprises the following steps a.1) catalytic hydrogenation of neral and/or geranial to give citronellal, b.1) cyclization of citronellal to isopulegol in the presence of an acidic catalyst, c.1) purification of isopulegol by crystallization and d.1) catalytic hydrogenation of isopulegol to give menthol.
    Type: Application
    Filed: October 23, 2012
    Publication date: February 21, 2013
    Applicant: BASF SE
    Inventors: Gunnar Heydrich, Gabriele Gralla, Matthias Rauls, Joachim Schmidt-Leithoff, Klaus Ebel, Wolfgang Krause, Steffen Oehlenschläger, Christoph Jäkel, Marko Friedrich, Eike Johannes Bergner, Nawid Kashani-Shirazi, Rocco Paciello
  • Publication number: 20130012739
    Abstract: A process for preparing formic acid by reacting carbon dioxide with hydrogen in a hydrogenation reactor in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent to form formic acid-amine adducts which are subsequently dissociated thermally into formic acid and tertiary amine.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Peter Bassler, Martin Schäfer, Stefan Rittinger
  • Patent number: 8318985
    Abstract: The present invention relates to a particularly economic overall method for producing menthol, specifically for producing optically active, essentially enantiomerically and diastereomerically pure L-menthol and racemic menthol, starting from the starting material citral which is available inexpensively on an industrial scale. The method comprises the following steps a) catalytic hydrogenation of neral and/or geranial to give citronellal, b) cyclization of citronellal to isopulegol in the presence of an acidic catalyst, c) purification of isopulegol by crystallization and d) catalytic hydrogenation of isopulegol to give menthol.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: November 27, 2012
    Assignee: BASF SE
    Inventors: Gunnar Heydrich, Gabriele Gralla, Matthias Rauls, Joachim Schmidt-Leithoff, Klaus Ebel, Wolfgang Krause, Steffen Oehlenschläger, Christoph Jäkal, Marko Friedrich, Eike Johannes Bergner, Nawid Kashani-Shirazi, Rocco Paciello
  • Publication number: 20120232293
    Abstract: Process for preparing primary amines which have at least one functional group of the formula (—CH2—NH2) and at least one further primary amino group by alcohol amination of starting materials having at least one functional group of the formula (—CH2—OH) and at least one further functional group (—X), where (—X) is selected from among hydroxyl groups and primary amino groups, by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20120232309
    Abstract: Preparing a primary amine by alcohol amination of alcohol with ammonia and elimination of water includes reacting, in a homogeneously catalyzed reaction, a mixture of alcohol, ammonia, nonpolar solvent, and catalyst, in a liquid phase, to obtain a product mixture. The process then includes phase separating the product mixture into a polar product phase and a nonpolar product phase, and separating off the nonpolar product phase. At least some of the nonpolar phase returns to the homogenously catalyzed reaction. The process further includes separating off amination product from the polar product phase. At least some of the catalyst is in the nonpolar phase, and the catalyst accumulates in the nonpolar phase.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20120232294
    Abstract: Process for preparing alkanolamines which have a primary amino group (—NH2) and a hydroxyl group (—OH) by alcohol amination of diols having two hydroxyl groups (—OH) by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20120232292
    Abstract: Process for the preparation of primary amines which have at least one functional group of the formula (—CH2—NH2) by alcohol amination of starting materials which have at least one functional group of the formula (—CH2—OH), with ammonia, with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises at least one element selected from groups 8 and 9 of the Periodic Table of the Elements, and also at least one phosphorus donor ligand of the general formula (I).
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris BUSCHHAUS, Marion Kristina BRINKS, Mathias SCHELWIES, Rocco PACIELLO, Johann-Peter MELDER, Martin MERGER
  • Publication number: 20120157711
    Abstract: The present invention relates to a process for preparing formic acid by reacting carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where a tertiary amine having a boiling point which is at least 5° C. higher than that of formic acid is used and a reaction mixture comprising the polar solvent, the formic acid/amine adducts, the tertiary amine and the catalyst is formed in the reaction in the hydrogenation reactor (I) and is discharged from the reactor as output (3).
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Petra Deckert, Peter Bassler
  • Publication number: 20120071690
    Abstract: A process is proposed for production of formamides by reaction of carbon dioxide with hydrogen in a hydrogenation reactor I in the presence of a catalyst comprising an element from group 8, 9 or 10 of the periodic table, a tertiary amine comprising at least 6 carbon atoms per molecule, and also a polar solvent, to form formic acid-amine adducts as intermediates, which are subsequently reacted with ammonia or amines in a reactor to obtain a two-phase liquid reaction effluent from which the liquid phase enriched with the formamides is distillatively separated to recover the formamide.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Marek Pazicky, Thomas Schaub, Ansgar Gereon Altenhoff, Donata Maria Fries, Rocco Paciello
  • Patent number: 8110709
    Abstract: The present invention relates to a process for the hydroformylation of ethylenically unsaturated compounds by reaction with carbon monoxide and hydrogen in the presence of a catalytically active fluid which comprises a dissolved metal complex of a metal of transition group VIII of the Periodic Table of the Elements with at least one phosphoramidite compound as ligand, wherein the fluid is brought into contact with a base.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: February 7, 2012
    Assignee: BASF SE
    Inventors: Rainer Papp, Wolfgang Ahlers, Thomas Mackewitz, Rocco Paciello, Martin Volland
  • Publication number: 20120022290
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, where the work-up of the output (3) from the hydrogenation reactor (I) is carried out by addition of water so as to increase the distribution coefficient of the catalyst between the upper phase (4) and the lower phase.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 26, 2012
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Publication number: 20110319657
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Publication number: 20110319658
    Abstract: A process for preparing formic acid by reaction of carbon dioxide (1) with hydrogen (2) in a hydrogenation reactor (I) in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine comprising at least 12 carbon atoms per molecule and a polar solvent comprising one or more monoalcohols selected from among methanol, ethanol, propanols and butanols and also water, to form formic acid/amine adducts as intermediates which are subsequently thermally dissociated, with work-up of the output (3) from the hydrogenation reactor (I) in a plurality of process steps, where a tertiary amine-comprising stream (13) from the work-up is used as selective solvent for the catalyst, is proposed.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Thomas Schaub, Donata Maria Fries, Rocco Paciello, Klaus-Dieter Mohl, Martin Schäfer, Stefan Rittinger, Daniel Schneider
  • Publication number: 20110294977
    Abstract: The invention relates to a process for the preparation of polyalkylenepolyamines by catalyzed alcohol amination, in which (i) aliphatic aminoalcohols are reacted with one another or (ii) aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a catalyst.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris BUSCHHAUS, Johann-Peter MELDER, Rocco PACIELLO, Stephan HUEFFER, Helmut WITTELER
  • Patent number: 7973198
    Abstract: The present invention relates to a process for preparing optically active carbonyl compounds by asymmetrically hydrogenating ?,?-unsaturated carbonyl compounds in the presence of optically active transition metal catalysts which are soluble in the reaction mixture and have at least one carbon monoxide ligand, the optically active catalyst which has at least one carbon monoxide ligand and is to be used in each case being prepared by pretreating a catalyst precursor with a gas mixture comprising carbon monoxide and hydrogen and the asymmetric hydrogenation being performed in the presence of carbon monoxide supplied additionally to the reaction mixture.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: July 5, 2011
    Assignee: BASF SE
    Inventors: Joachim Schmidt-Leithoff, Christoph Jäkel, Rocco Paciello
  • Publication number: 20110045560
    Abstract: A process for preparing optically active 2-methylalkan-1-ol of the general formula (III) comprising the following steps: carbonyl-selective reduction of 2-methylalk-2-en-1-al of the general formula (I) to 2-methylalk-2-en-1-ol of the general formula (II), (ii) enantioselective hydrogenation of 2-methylalk-2-en-1-ol to the general formula (iii), (iii) increasing the optical yield of the optically active 2-methylalkan-1-ol (III) obtained in step (ii) by a lipase-catalyzed acylation reaction, where the radical R means C1-C10-alkyl.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 24, 2011
    Applicant: BASF Aktiengesellschaft
    Inventors: Christoph Jäkel, Gunnar Heydrich, Rainer Stürmer, Rocco Paciello
  • Publication number: 20110028746
    Abstract: The present invention relates to a process for preparing aldehydes by reacting an ?,?-unsaturated carboxylic acid or a salt thereof with carbon monoxide and hydrogen in the presence of a catalyst comprising at least one complex of a metal of transition group VIII of the Periodic Table of the Elements with at least one compound of the formula (I), where Pn is pnicogen; W is a divalent bridging group having from 1 to 8 bridge atoms between the flanking bonds; R1 is a functional group capable of forming at least one intermolecular, noncovalent bond with the —X(?O)OH group of the compound of the formula (I); R2, R3 are each in each case optionally substituted alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl or together with the pnicogen atom and together with the groups Y2 and Y3 if present form an optionally fused and optionally substituted 5- to 8-membered heterocycle; a, b and c are each 0 or 1; and Y1,2,3 are each, independently of one another, O, S, NRa or SiRbRc, where Ra,b,c are each H or in each c
    Type: Application
    Filed: March 25, 2009
    Publication date: February 3, 2011
    Applicant: BASF SE
    Inventors: Jens Rudolph, Joachim Schmidt-Leithoff, Rocco Paciello, Bernhard Breit, Thomas Smejkal
  • Publication number: 20100331573
    Abstract: Process for preparing formic acid by hydrogenation of carbon dioxide in the presence of a catalyst comprising an element of group 8, 9 or 10 of the Periodic Table, a tertiary amine and a polar solvent at a pressure of from 0.2 to 30 MPa abs and a temperature of from 20 to 200° C. to form two liquid phases, separation of the two liquid phases, wherein the liquid phase (B) enriched with the tertiary amine is recirculated to the hydrogenation reactor and the formic acid/amine adduct from the liquid phase (A) enriched with the formic acid/amine adduct and the polar solvent is thermally dissociated into free formic acid and free tertiary amine in a distillation unit and the tertiary amine liberated in the dissociation and the polar solvent are recirculated to the hydrogenation reactor.
    Type: Application
    Filed: June 25, 2010
    Publication date: December 30, 2010
    Applicant: BASF SE
    Inventors: Thomas Schaub, Rocco Paciello, Klaus-Dieter Mohl, Daniel Schneider, Martin Schäfer, Stefan Rittinger
  • Patent number: 7816107
    Abstract: A process for preparing optically active 2-methylalkan-1-ol of the general formula (III) comprising the following steps: (i) carbonyl-selective reduction of 2-methylalk-2-en-1-al of the general formula (I) to 2-methylalk-2-en-1-ol of the general formula (II), (ii) enantioselective hydrogenation of 2-methylalk-2-en-1-ol to the general formula (iii), (iii) increasing the optical yield of the optically active 2-methylalkan-1-ol (III) obtained in step (ii) by a lipase-catalyzed acylation reaction, where the radical R means C1-C10-alkyl.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: October 19, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Christoph Jäkel, Gunnar Heydrich, Rainer Stürmer, Rocco Paciello
  • Publication number: 20100249467
    Abstract: The present invention relates to a particularly economic overall method for producing menthol, specifically for producing optically active, essentially enantiomerically and diastereomerically pure L-menthol and racemic menthol, starting from the starting material citral which is available inexpensively on an industrial scale. The method comprises the following steps a.1) catalytic hydrogenation of neral and/or geranial to give citronellal, b.1) cyclization of citronellal to isopulegol in the presence of an acidic catalyst, c.1) purification of isopulegol by crystallization and d.1) catalytic hydrogenation of isopulegol to give menthol.
    Type: Application
    Filed: November 13, 2008
    Publication date: September 30, 2010
    Applicant: BASF SE
    Inventors: Gunnar Heydrich, Gabriele Gralla, Matthias Rauls, Joachim Schmidt-Leithoff, Klaus Ebel, Wolfgang Krause, Steffen Oehlenschläger, Christoph Jäkel, Marko Friedrich, Eike Johannes Bergner, Nawid Kashani-Shirazi, Rocco Paciello