Patents by Inventor Rode R. Mora

Rode R. Mora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140299935
    Abstract: A method for making a semiconductor device is provided which includes (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Konstantin V. Loiko, Toni D. Van Gompel, Rode R. Mora, Michael D. Turner, Brian A. Winstead, Mark D. Hall
  • Patent number: 8766362
    Abstract: A method for making a semiconductor device is provided which includes (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: July 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Konstantin V. Loiko, Toni D. Van Gompel, Rode R. Mora, Michael D. Turner, Brian A. Winstead, Mark D. Hall
  • Patent number: 8513066
    Abstract: A method for creating an inverse T field effect transistor is provided. The method includes creating a horizontal active region and a vertical active region on a substrate. The method further comprises forming a sidewall spacer on a first side of the vertical active region and a second side of the vertical active region. The method further includes removing a portion of the horizontal active region, which is not covered by the sidewall spacer. The method further includes removing the sidewall spacer. The method further includes forming a gate dielectric over at least a first part of the horizontal active region and at least a first part of the vertical active region. The method further includes forming a gate electrode over the gate dielectric. The method further includes forming a source region and a drain region over at least a second part of the horizontal active region and at least a second part of the vertical active region.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: August 20, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rode R. Mora
  • Publication number: 20120273889
    Abstract: A method for making a semiconductor device is provided which includes (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 1, 2012
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Konstantin V. LOIKO, Toni D. VAN GOMPEL, Rode R. MORA, Michael D. TURNER, Brian A. WINSTEAD, Mark D. HALL
  • Patent number: 8236638
    Abstract: A method for making a semiconductor device is provided which includes (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: August 7, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Konstantin V. Loiko, Toni D. Van Gompel, Rode R. Mora, Michael D. Turner, Brian A. Winstead, Mark D. Hall
  • Patent number: 7998822
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: August 16, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Patent number: 7939880
    Abstract: A non-volatile memory (NVM) cell comprising a layer of discrete charge storing elements, a control gate, and a select gate is provided. The control gate has a first sidewall with a lower portion being at least a first angle 10 degrees away from 90 degrees with respect to substrate. Further, the select gate has a second sidewall with a lower portion being at least a second angle at least 10 degrees away from 90 degrees with respect to the substrate. The NVM cell further comprises a layer of dielectric material located between the first sidewall and the second sidewall.
    Type: Grant
    Filed: April 15, 2008
    Date of Patent: May 10, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Rode R. Mora
  • Patent number: 7829447
    Abstract: Forming structures such as fins in a semiconductor layer according to a pattern formed by oxidizing a sidewall of a layer of oxidizable material. In one embodiment, source/drain pattern structures and a fin pattern structures are patterned in the oxidizable layer. The fin pattern structure is then masked from an oxidation process that grows oxide on the sidewalls of the channel pattern structure and the top surface of the source/drain pattern structures. The remaining oxidizable material of the channel pattern structure is subsequently removed leaving a hole between two portions of the oxide layer. These two portions are used in one embodiment as a mask for patterning the semiconductor layer to form two fins. This patterning also leaves the source/drain structures connected to the fins.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: November 9, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rode R. Mora, Tab A. Stephens, Tien Ying Luo
  • Patent number: 7687370
    Abstract: A method for forming a semiconductor isolation trench includes forming a pad oxide layer over a substrate and forming a barrier layer over the substrate. A masking layer is formed over the barrier layer and is patterned to form at least one opening in the masking layer. At least a part of the barrier layer and at least a part of the pad oxide layer are etched through the at least one opening resulting in a trench pad oxide layer. Etching of the trench pad oxide layer stops substantially at a top surface of the substrate within the isolation trench. An oxide layer is grown by diffusion on at least the top surface of the substrate corresponding to the at least one isolation trench. The method further includes etching the oxide layer and at least a portion of the substrate to form at least one isolation trench opening.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Toni D. Van Gompel, John J. Hackenberg, Rode R. Mora, Suresh Venkatesan
  • Publication number: 20090256186
    Abstract: A non-volatile memory (NVM) cell comprising a layer of discrete charge storing elements, a control gate, and a select gate is provided. The control gate has a first sidewall with a lower portion being at least a first angle 10 degrees away from 90 degrees with respect to substrate. Further, the select gate has a second sidewall with a lower portion being at least a second angle at least 10 degrees away from 90 degrees with respect to the substrate. The NVM cell further comprises a layer of dielectric material located between the first sidewall and the second sidewall.
    Type: Application
    Filed: April 15, 2008
    Publication date: October 15, 2009
    Inventors: SUNG-TAEG KANG, Rode R. Mora
  • Patent number: 7579243
    Abstract: Split gate memory cell formation includes forming a sacrificial layer over a substrate. The sacrificial layer is patterned to form a sacrificial structure with a first sidewall and a second sidewall. A layer of nanocrystals is formed over the substrate. A first layer of polysilicon is deposited over the substrate. An anisotropic etch on the first polysilicon layer forms a first polysilicon sidewall spacer adjacent the first sidewall and a second polysilicon sidewall spacer adjacent the second sidewall. Removal of the sacrificial structure leaves the first sidewall spacer and the second sidewall spacer. A second layer of polysilicon is deposited over the first and second sidewall spacers and the substrate. An anisotropic etch on the second layer of polysilicon forms a third sidewall spacer adjacent to a first side of the first sidewall spacer and a fourth sidewall spacer adjacent to a first side of the second sidewall spacer.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: August 25, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Rode R. Mora, Robert F. Steimle
  • Patent number: 7528078
    Abstract: A process of forming an electronic device can include patterning a semiconductor layer to define an opening extending to an insulating layer, wherein the insulating layer lies between a substrate and the semiconductor layer. After patterning the semiconductor layer, the opening can have a bottom, and the semiconductor layer can have a sidewall and a surface. The surface can be spaced apart from the insulating layer, and the sidewall can extend from the surface towards the insulating layer. The process can also include depositing a nitride layer within the opening, wherein depositing is performed using a PECVD technique. The process can further include densifying the nitride layer. The process can still further include removing a part of the nitride layer, wherein a remaining portion of the nitride layer can lie within the opening and be spaced apart from the surface.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: May 5, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Toni D. Van Gompel, Kuang-Hsin Chen, Laegu Kang, Rode R. Mora, Michael D. Turner
  • Publication number: 20090093108
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Patent number: 7446006
    Abstract: A semiconductor fabrication process includes forming a gate electrode (112) overlying a gate dielectric (114) overlying a semiconductor substrate (104) of a wafer (101) and a liner dielectric layer (116) including vertical portions (118) adjacent sidewalls of the gate electrode and horizontal portions (117) overlying an upper surface of the semiconductor substrate (104). A spacer (108) is formed adjacent a vertical portion (118) and overlying a horizontal portion (117) of the liner dielectric layer (116). After forming the spacer (108), exposed portions of the liner dielectric layer (116) are removed to form a liner dielectric structure (126) covered by the extension spacer (108). The extension spacer (108) is then etched back to expose or uncover extremities of the liner dielectric structure (126). Prior to etching back the spacer (108), a metal (130) may be sputtered deposited over the wafer (101) preparatory to forming a silicide (134).
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 4, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dharmesh Jawarani, John R. Alvis, Michael G. Harrison, Leo Mathew, John E. Moore, Rode R. Mora
  • Publication number: 20080261361
    Abstract: A method for making a semiconductor device is provided which comprises (a) providing a layer stack comprising a semiconductor layer (211) and a dielectric layer (209) disposed between the substrate and the semiconductor layer, (b) creating a trench (210) which extends through the semiconductor layer and which exposes a portion of the dielectric layer, the trench having a sidewall, (c) creating a spacer structure (221) which comprises a first material and which is adjacent to the sidewall of the trench, and (d) forming a stressor layer (223) which comprises a second material and which is disposed on the bottom of the trench.
    Type: Application
    Filed: April 18, 2007
    Publication date: October 23, 2008
    Inventors: Konstantin V. Loiko, Toni D. Van Gompel, Rode R. Mora, Michael D. Turner, Brian A. Winstead, Mark D. Hall
  • Publication number: 20080076221
    Abstract: Split gate memory cell formation includes forming a sacrificial layer over a substrate. The sacrificial layer is patterned to form a sacrificial structure with a first sidewall and a second sidewall. A layer of nanocrystals is formed over the substrate. A first layer of polysilicon is deposited over the substrate. An anisotropic etch on the first polysilicon layer forms a first polysilicon sidewall spacer adjacent the first sidewall and a second polysilicon sidewall spacer adjacent the second sidewall. Removal of the sacrificial structure leaves the first sidewall spacer and the second sidewall spacer. A second layer of polysilicon is deposited over the first and second sidewall spacers and the substrate. An anisotropic etch on the second layer of polysilicon forms a third sidewall spacer adjacent to a first side of the first sidewall spacer and a fourth sidewall spacer adjacent to a first side of the second sidewall spacer.
    Type: Application
    Filed: September 26, 2006
    Publication date: March 27, 2008
    Inventors: Sung-Taeg Kang, Rode R. Mora, Robert F. Steimle
  • Publication number: 20070269969
    Abstract: Forming structures such as fins in a semiconductor layer according to a pattern formed by oxidizing a sidewall of a layer of oxidizable material. In one embodiment, source/drain pattern structures and a fin pattern structures are patterned in the oxidizable layer. The fin pattern structure is then masked from an oxidation process that grows oxide on the sidewalls of the channel pattern structure and the top surface of the source/drain pattern structures. The remaining oxidizable material of the channel pattern structure is subsequently removed leaving a hole between two portions of the oxide layer. These two portions are used in one embodiment as a mask for patterning the semiconductor layer to form two fins. This patterning also leaves the source/drain structures connected to the fins.
    Type: Application
    Filed: May 19, 2006
    Publication date: November 22, 2007
    Inventors: Leo Mathew, Rode R. Mora, Tab A. Stephens, Tien Ying Luo
  • Patent number: 7125805
    Abstract: A semiconductor fabrication process includes forming a gate electrode overlying a substrate. A first silicon nitride spacer is formed adjacent the gate electrode sidewalls and a disposable silicon nitride spacer is then formed adjacent the offset spacer. An elevated source/drain structure, defined by the boundaries of the disposable spacer, is then formed epitaxially. The disposable spacer is then removed to expose the substrate proximal to the gate electrode and a shallow implant, such as a halo or extension implant, is introduced into the exposed substrate proximal the gate electrode. A replacement spacer is formed substantially where the disposable spacer existed a source/drain implant is done to introduce a source/drain impurity distribution into the elevated source drain. The gate electrode may include an overlying silicon nitride capping layer and the first silicon nitride spacer may contact the capping layer to surround the polysilicon gate electrode in silicon nitride.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: October 24, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jian Chen, Rode R. Mora, Marc A. Rossow, Yasuhito Shiho
  • Patent number: 6951783
    Abstract: A semiconductor fabrication process includes forming a silicon fin overlying a substrate. A gate dielectric is formed on primary faces of the fin. A gate electrode is formed over at least two faces of the fin. Dielectric spacers are then selectively formed in close proximity and confined to the sidewalls of the gate electrode thereby leaving a majority of the primary fin faces exposed. Thereafter a silicide is formed on the primary fin faces. The forming of the gate electrode in one embodiment includes depositing polysilicon over the fin and substrate, depositing a capping layer over the polysilicon, patterning photoresist over the capping layer and etching through the capping layer and the polysilicon with the patterned photoresist in place wherein the etching produces a polysilicon width that is less than a width of the capping layer to create voids under the capping layer adjacent sidewalls of the polysilicon where the confined spacers can be formed.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 4, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, Rode R. Mora, Bich-Yen Nguyen, Tab A. Stephens, Anne M. Vandooren