Patents by Inventor Rodger Whitby

Rodger Whitby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11490495
    Abstract: An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 1, 2022
    Assignee: NthDegree Technologies Worldwide, Inc.
    Inventors: Rodger Whitby, Bradley S. Oraw
  • Publication number: 20220271343
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Application
    Filed: March 2, 2022
    Publication date: August 25, 2022
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Patent number: 11276885
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 15, 2022
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi
  • Publication number: 20210321504
    Abstract: An LED sticker is disclosed that receives an NFC transmission from a nearby smartphone to energize LEDs in the sticker. A spiral (or loop) antenna is used in the sticker to generate power from the NFC transmission. The NFC signal is at 13.56 MHz, which is the resonant frequency of the NFC antenna circuit in the smartphone. The LED portion is formed by sandwiching pre-formed microscopic LEDs between two conductive layers to connect the LEDs in parallel. The conductive layers form a relatively large integral capacitor that is used to achieve the 13.56 MHz resonant frequency. So no additional capacitor is needed in the circuit to achieve a resonance of 13.56 MHz. This greatly reduces the design requirements of the antenna. The LED sticker may also contain an NFC tag having its own independent loop antenna and NFC chip. Various practical applications of the LED sticker are disclosed.
    Type: Application
    Filed: May 27, 2020
    Publication date: October 14, 2021
    Inventors: Rodger Whitby, Bradley S. Oraw
  • Publication number: 20190221891
    Abstract: The disclosed technology generally relates to thin film-based energy storage devices, and more particularly to printed thin film-based energy storage devices. The thin film-based energy storage device includes a first current collector layer and a second current collector layer over an electrically insulating substrate and adjacently disposed in a lateral direction. The thin film-based energy storage device additionally includes a first electrode layer of a first type over the first current collector layer and a second electrode layer of a second type over the second current collector layer. A separator separates the first electrode layer and the second electrode layer. One or more of the first current collector layer, the first electrode layer, the separator, the second electrode layer and the second current collector layer are printed layers.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Vera N. Lockett, Yasser Salah, Alexandra Elyse Hartman, Sri Harsha Kolli, Rodger Whitby, William Johnstone Ray, Leila Daneshi