Patents by Inventor Rodney C. Daniels

Rodney C. Daniels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10969379
    Abstract: A bioelectrochemical sensor utilizing a nanoporous gold electrode. The bioelectrochemical sensor is suitable for measuring redox in biologic media while having increased resistance to biofouling as compared to conventional electrodes such as planar gold electrodes, due to greater exposed surface area of the three-dimensional ligature structure defining the nanopores. The nanopores have a pore size of 5-100 nm, preferably with an average pore size of less than 50 nm, and more preferably with an average pore size of less than 20 nm.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: April 6, 2021
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, Virginia Commonwealth University
    Inventors: Rodney C. Daniels, Kevin R. Ward, Maryanne M. Collinson
  • Publication number: 20200297982
    Abstract: A dependent closed pressure vessel is fluidly coupled to an independent closed pressure vessel. A pressure sensor monitors pressure in the vessels to generate raw pressure measurement data. A flow meter monitors multidirectional rate of flow of fluid between the vessels and the volume of fluid flowing from the independent closed pressure vessel to generate raw rate of flow and raw volume measurement data. A pressure/flow regulator valve adjusts pressure in the dependent closed pressure vessel in response to a pressure set point signal generated in response to the raw pressure data, adjusts the rate of flow of fluid between the vessels in response to a rate of flow set point signal generated in response to the raw rate of flow data, and adjusts the rate of flow of fluid between the vessels in response to a volume set point signal generated in response to the raw volume data.
    Type: Application
    Filed: November 20, 2018
    Publication date: September 24, 2020
    Inventors: Rodney C. Daniels, Ashwin Belle
  • Patent number: 10610113
    Abstract: The invention is a passive, wearable sensor that uses a thin piezoelectric material to produce a time history of blood pressure of the patient, with signal processing algorithms to extract physiological information. The sensor consists of a piezoelectric transducer set in a polymer laminate that can be applied to the finger or wrist of the patient. During use, a combination of compressive and bending deformation in the piezoelectric layer in response to blood pressure in the finger or wrist as a voltage output. Using signal processing techniques, the raw signal is filtered and decomposed to obtain a information to form derivative signals such as blood pressure, pulse pressure, pulse pressure variability, heart rate, heart rate variability, and respiratory rate which can be very important pre-cursors in the monitoring of the patient's physiological conditions.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: April 7, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Kayvan Najarian, Kenn Oldham, Daniel Slavin, Ashwin Belle, Kevin R. Ward, Sardar Ansari, Rodney C. Daniels
  • Publication number: 20200003754
    Abstract: A bioelectrochemical sensor utilizing a nanoporous gold electrode. The bioelectrochemical sensor is suitable for measuring redox in biologic media while having increased resistance to biofouling as compared to conventional electrodes such as planar gold electrodes, due to greater exposed surface area of the three-dimensional ligature structure defining the nanopores. The nanopores have a pore size of 5-100 nm, preferably with an average pore size of less than 50 nm, and more preferably with an average pore size of less than 20 nm.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Inventors: Rodney C. Daniels, Kevin R. Ward, Maryanne M. Collinson
  • Patent number: 10451606
    Abstract: A bioelectrochemical sensor utilizing a nanoporous gold electrode. The bioelectrochemical sensor is suitable for measuring redox in biologic media while having increased resistance to biofouling as compared to conventional electrodes such as planar gold electrodes, due to greater exposed surface area of the three-dimentional ligature structure defining the nanopores. The nanopores have a pore size of 5-100 nm, preferably with an average pore size of less than 50 nm, and more preferably with an average pore size of less than 20 nm.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: October 22, 2019
    Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, VIRGINIA COMMONWEALTH UNIVERSITY
    Inventors: Rodney C. Daniels, Kevin R. Ward, Maryanne M. Collinson
  • Publication number: 20160266090
    Abstract: A bioelectrochemical sensor utilizing a nanoporous gold electrode. The bioelectrochemical sensor is suitable for measuring redox in biologic media while having increased resistance to biofouling as compared to conventional electrodes such as planar gold electrodes, due to greater exposed surface area of the three-dimentional ligature structure defining the nanopores. The nanopores have a pore size of 5-100 nm, preferably with an average pore size of less than 50 nm, and more preferably with an average pore size of less than 20 nm.
    Type: Application
    Filed: October 21, 2014
    Publication date: September 15, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Rodney C. Daniels, Kevin R. Ward, Maryanne M. Collinson
  • Publication number: 20150305632
    Abstract: The invention is a passive, wearable sensor that uses a thin piezoelectric material to produce a time history of blood pressure of the patient, with signal processing algorithms to extract physiological information. The sensor consists of a piezoelectric transducer set in a polymer laminate that can be applied to the finger or wrist of the patient. During use, a combination of compressive and bending deformation in the piezoelectric layer in response to blood pressure in the finger or wrist as a voltage output. Using signal processing techniques, the raw signal is filtered and decomposed to obtain a information to form derivative signals such as blood pressure, pulse pressure, pulse pressure variability, heart rate, heart rate variability, and respiratory rate which can be very important pre-cursors in the monitoring of the patient's physiological conditions.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 29, 2015
    Inventors: Kayvan Najarian, Kenn Oldham, Daniel Slavin, Ashwin Belle, Kevin R. Ward, Sardar Ansari, Rodney C. Daniels