Patents by Inventor Rodolfo Belen

Rodolfo Belen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8722543
    Abstract: A composite hard mask is disclosed that prevents build up of metal etch residue in a MRAM device during etch processes that define an MTJ shape. As a result, MTJ shape integrity is substantially improved. The hard mask has a lower non-magnetic spacer, a middle conductive layer, and an upper sacrificial dielectric layer. The non-magnetic spacer serves as an etch stop during a pattern transfer with fluorocarbon plasma through the conductive layer. A photoresist pattern is transferred through the dielectric layer with a first fluorocarbon etch. Then the photoresist is removed and a second fluorocarbon etch transfers the pattern through the conductive layer. The dielectric layer protects the top surface of the conductive layer during the second fluorocarbon etch and during a substantial portion of a third RIE step with a gas comprised of C, H, and O that transfers the pattern through the underlying MTJ layers.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: May 13, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Rodolfo Belen, Rongfu Xiao, Tom Zhong, Witold Kula, Chyu-Jiuh Torng
  • Publication number: 20120028373
    Abstract: A composite hard mask is disclosed that prevents build up of metal etch residue in a MRAM device during etch processes that define an MTJ shape. As a result, MTJ shape integrity is substantially improved. The hard mask has a lower non-magnetic spacer, a middle conductive layer, and an upper sacrificial dielectric layer. The non-magnetic spacer serves as an etch stop during a pattern transfer with fluorocarbon plasma through the conductive layer. A photoresist pattern is transferred through the dielectric layer with a first fluorocarbon etch. Then the photoresist is removed and a second fluorocarbon etch transfers the pattern through the conductive layer. The dielectric layer protects the top surface of the conductive layer during the second fluorocarbon etch and during a substantial portion of a third RIE step with a gas comprised of C, H, and O that transfers the pattern through the underlying MTJ layers.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Rodolfo Belen, Rongfu Xiao, Tom Zhong, Witold Kula, Chyu-Jiuh Torng
  • Patent number: 7863060
    Abstract: A method for forming a MTJ in a STT-MRAM is disclosed in which the easy-axis CD is determined independently of the hard-axis CD. One approach involves two photolithography steps each followed by two plasma etch steps to form a post in a hard mask which is transferred through a MTJ stack of layers. The hard mask has an upper Ta layer with a thickness of 300 to 400 Angstroms and a lower NiCr layer less than 50 Angstroms thick. The upper Ta layer is etched with a fluorocarbon etch while lower NiCr layer and underlying MTJ layers are etched with a CH3OH. Preferably, a photoresist mask layer is removed by oxygen plasma between the fluorocarbon and CH3OH plasma etches. A lower hard mask layer made of NiCr or the like is inserted to prevent formation and buildup of Ta etch residues that can cause device shunting.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 4, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Rodolfo Belen, Tom Zhong, Witold Kula, Chyu-Jiuh Torng
  • Publication number: 20100240151
    Abstract: A method for forming a MTJ in a STT-MRAM is disclosed in which the easy-axis CD is determined independently of the hard-axis CD. One approach involves two photolithography steps each followed by two plasma etch steps to form a post in a hard mask which is transferred through a MTJ stack of layers. The hard mask has an upper Ta layer with a thickness of 300 to 400 Angstroms and a lower NiCr layer less than 50 Angstroms thick. The upper Ta layer is etched with a fluorocarbon etch while lower NiCr layer and underlying MTJ layers are etched with a CH3OH. Preferably, a photoresist mask layer is removed by oxygen plasma between the fluorocarbon and CH3OH plasma etches. A lower hard mask layer made of NiCr or the like is inserted to prevent formation and buildup of Ta etch residues that can cause device shunting.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Inventors: Rodolfo Belen, Tom Zhong, Witold Kula, Chyu-Jiuh Torng