Patents by Inventor Rodolfo E. Camacho-Aguilera

Rodolfo E. Camacho-Aguilera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10680413
    Abstract: In a method for electrically doping a semiconducting material, a layer of germanium is formed having a germanium layer thickness, while in situ incorporating phosphorus dopant atoms at a concentration of at least about 5×1018 cm?3 through the thickness of the germanium layer during formation of the germanium layer. Additional phosphorus dopant atoms are ex situ incorporated through the thickness of the germanium layer, after formation of the germanium layer, to produce through the germanium layer thickness a total phosphorus dopant concentration of at least about 2×1019 cm?3.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 9, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Jonathan T. Bessette, Yan Cai, Rodolfo E. Camacho-Aguilera, Jifeng Liu, Lionel Kimerling, Jurgen Michel
  • Publication number: 20180198256
    Abstract: In a method for electrically doping a semiconducting material, a layer of germanium is formed having a germanium layer thickness, while in situ incorporating phosphorus dopant atoms at a concentration of at least about 5×1018 cm?3 through the thickness of the germanium layer during formation of the germanium layer. Additional phosphorus dopant atoms are ex situ incorporated through the thickness of the germanium layer, after formation of the germanium layer, to produce through the germanium layer thickness a total phosphorus dopant concentration of at least about 2×1019 cm?3.
    Type: Application
    Filed: May 1, 2017
    Publication date: July 12, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Jonathan T. Bessette, Yan Cai, Rodolfo E. Camacho-Aguilera, Jifeng Liu, Lionel Kimerling, Jurgen Michel
  • Patent number: 9692209
    Abstract: In a method of forming a photonic device, a first silicon electrode is formed, and then a germanium active layer is formed on the first silicon electrode while including n-type dopant atoms in the germanium layer, during formation of the layer, to produce a background electrical dopant concentration that is greater than an intrinsic dopant concentration of germanium. A second silicon electrode is then formed on a surface of the germanium active layer. The formed germanium active layer is doped with additional dopant for supporting an electrically-pumped guided mode as a laser gain medium with an electrically-activated n-type electrical dopant concentration that is greater than the background dopant concentration to overcome electrical losses of the photonic device.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: June 27, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Jonathan T. Bessette, Yan Cai, Rodolfo E. Camacho-Aguilera, Jifeng Liu, Lionel Kimerling, Jurgen Michel
  • Patent number: 9683845
    Abstract: A magnetometer unit which may be incorporated in an electronic device receives first magnetic response data from a first magnetic sensor and second magnetic response data from a second magnetic sensor displaced from the first magnetic sensor. The magnetometer unit generates a composite response surface representation from the first magnetic response data and the second magnetic response data, and stores the composite response surface representation in a non-transitory memory.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: June 20, 2017
    Assignee: Intel Corporation
    Inventors: Kevin J. Daniel, Xianfeng Ding, Kenneth P. Foust, Eduardo X. Alban, Rodolfo E. Camacho-Aguilera
  • Publication number: 20160091313
    Abstract: In one example a magnetometer unit comprises logic to receive first magnetic response data from a first magnetic sensor and second magnetic response data from a second magnetic sensor displaced from the first magnetic sensor, generate a composite response surface representation from the first magnetic response data and the second magnetic response data, and store the composite response surface representation in a non-transitory memory. Other examples may be described.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Applicant: Intel Corporation
    Inventors: Kevin J. Daniel, Xianfeng Ding, Kenneth P. Foust, Eduardo X. Alban, Rodolfo E. Camacho-Aguilera
  • Publication number: 20140254620
    Abstract: In a method of forming a photonic device, a first silicon electrode is formed, and then a germanium active layer is formed on the first silicon electrode while including n-type dopant atoms in the germanium layer, during formation of the layer, to produce a background electrical dopant concentration that is greater than an intrinsic dopant concentration of germanium. A second silicon electrode is then formed on a surface of the germanium active layer. The formed germanium active layer is doped with additional dopant for supporting an electrically-pumped guided mode as a laser gain medium with an electrically-activated n-type electrical dopant concentration that is greater than the background dopant concentration to overcome electrical losses of the photonic device.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 11, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Jonathan T. Bessette, Yan Cai, Rodolfo E. Camacho-Aguilera, Jifeng Liu, Lionel Kimerling, Jurgen Michel