Patents by Inventor Rodolfo Morales

Rodolfo Morales has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080228032
    Abstract: Devices and methods for facilitating transvascular, minimally invasive and other “less invasive” surgical procedures generally include a sheath with an expandable balloon at the distal end, an inflation lumen for expanding the balloon, and a device passage lumen for allowing passage of one or more surgical instruments. The sheath is configured to house at least one visualization device such that an optical element of the device is positioned to view the surgical site. In some embodiments, instruments may be passed through the sheath, with the distal balloon partially or fully circumscribing or encircling the instruments. Any suitable instrument(s) may be passed through sheaths of the invention, such as a surgical clip applier for repairing a heart valve, an ablation member for treating atrial fibrillation, one or more pacemaker leads, a coronary sinus access device or the like.
    Type: Application
    Filed: June 2, 2008
    Publication date: September 18, 2008
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel F. Starksen, Nick Pliam, Rodolfo A. Morales, John To
  • Publication number: 20060261100
    Abstract: Stopper rods (22) for the continuous casting of molten metal have a stopper rod body (22-3), and a stopper rod tip (22-1) at a lower end of the stopper rod body. The stopper rod tip defines a frustoconically shaped exterior surface (22-1a) which terminates in a recessed nose (22-1b). The recessed nose is most preferably a curvilinear surface (e.g., a spherical segment), but non-curvilinear surfaces (e.g., prismatic, pyramidal, triangular, and quadrangular surfaces) may alternatively be employed. The frustoconically shaped exterior surface (22-1a) of the stopper rod tip most preferably forms an angle ? with respect to a horizontal plane which is sufficiently great so as to increase the velocity of the flowing molten metal to reduce the boundary layer thickness thereof adjacent the nozzle and stopper rod tip surfaces so as to minimize the deposition of inclusions thereon. Preferably the angle ? is greater than 70°.
    Type: Application
    Filed: April 14, 2006
    Publication date: November 23, 2006
    Applicant: Foseco International Ltd.
    Inventors: Rodolfo Morales, Lino Garcia
  • Publication number: 20060249546
    Abstract: Stopper rods for the continuous casting of molten metal have a stopper rod body, and a stopper rod tip at a lower end of the stopper rod body. The stopper rod tip defines a frustroconically shaped exterior surface which terminates in a recessed nose. The recessed nose is most preferably a curvilinear surface (e.g., a spherical segment), but non-curvilinear surfaces (e.g., prismatic, pyramidal, triangular, and quadrangular surfaces) may alternatively be employed. The frustroconically shaped exterior surface of the stopper rod tip most preferably forms an angle ? with respect to a horizontal plane which is sufficiently great so as to increase the velocity of the flowing molten metal to reduce the boundary layer thickness thereof adjacent the nozzle and stopper rod tip surfaces so as to minimize the deposition of inclusions thereon.
    Type: Application
    Filed: May 3, 2005
    Publication date: November 9, 2006
    Applicant: Foseco International Limited
    Inventor: Rodolfo Morales
  • Publication number: 20060129188
    Abstract: Described herein are methods of remodeling the base of a ventricle. In particular, methods of remodeling a valve annulus by forming a new fibrous annulus are described. These methods may result in a remodeled annulus that corrects valve leaflet function without substantially inhibiting the mobility of the leaflet. The methods of remodeling the base of the ventricle include the steps of securing a plurality of anchors to the valve annulus beneath one or more leaflets of the valve, constricting the valve annulus by cinching a tether connecting the anchors, and securing the anchors in the cinched conformation to allow the growth of fibrous tissue. The annulus may be cinched (e.g., while visualizing the annulus) so that the mobility of the valve leaflets is not significantly restricted. The remodeled annulus is typically constricted to shorten the diameter of the annulus to correct for valve dysfunction (e.g., regurgitation).
    Type: Application
    Filed: October 20, 2005
    Publication date: June 15, 2006
    Inventors: Niel Starksen, John To, Rodolfo Morales
  • Publication number: 20060058817
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: March 16, 2006
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Mariel Fabro, Michael Wei, Rodolfo Morales
  • Publication number: 20060025750
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: February 2, 2006
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Mariel Fabro, Michael Wei, Rodolfo Morales
  • Publication number: 20060025784
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: February 2, 2006
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Mariel Fabro, Michael Wei, Rodolfo Morales
  • Publication number: 20060025787
    Abstract: Methods and devices provide constriction of a heart valve annulus to treat cardiac valve regurgitation and other conditions. Embodiments typically include a device for attaching a cinching or tightening apparatus to a heart valve annulus to reduce the circumference of the annulus, thus reducing valve regurgitation. Tightening devices may include multiple tethered clips, multiple untethered crimping clips, stabilizing devices, visualization devices, and the like. In one embodiment, a plurality of tethered clips is secured circumferentially to a valve annulus, and the tether coupling the clips is cinched to reduce the circumference of at least a portion of the annulus. Methods and devices may be used in open heart surgical procedures, minimally invasive procedures, catheter-based procedures, and/or procedures on beating hearts or stopped hearts.
    Type: Application
    Filed: September 27, 2005
    Publication date: February 2, 2006
    Applicant: Guided delivery Systems, Inc.
    Inventors: Rodolfo Morales, Niel Starksen
  • Patent number: 6986775
    Abstract: Methods and devices provide constriction of a heart valve annulus to treat cardiac valve regurgitation and other conditions. Embodiments typically include a device for attaching a cinching or tightening apparatus to a heart valve annulus to reduce the circumference of the annulus, thus reducing valve regurgitation. Tightening devices may include multiple tethered clips, multiple untethered crimping clips, stabilizing devices, visualization devices, and the like. In one embodiment, a plurality of tethered clips is secured circumferentially to a valve annulus, and the tether coupling the clips is cinched to reduce the circumference of at least a portion of the annulus. Methods and devices may be used in open heart surgical procedures, minimally invasive procedures, catheter-based procedures, and/or procedures on beating hearts or stopped hearts.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: January 17, 2006
    Assignee: Guided Delivery Systems, Inc.
    Inventors: Rodolfo A. Morales, Niel F. Starksen
  • Publication number: 20050216078
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 29, 2005
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Rodolfo Morales
  • Publication number: 20050119523
    Abstract: Devices and methods for facilitating transvascular, minimally invasive and other “less invasive” surgical procedures generally include a sheath with an expandable balloon at the distal end, an inflation lumen for expanding the balloon, and a device passage lumen for allowing passage of one or more surgical instruments. The sheath is configured to house at least one visualization device such that an optical element of the device is positioned to view the surgical site. In some embodiments, instruments may be passed through the sheath, with the distal balloon partially or fully circumscribing or encircling the instruments. Any suitable instrument(s) may be passed through sheaths of the invention, such as a surgical clip applier for repairing a heart valve, an ablation member for treating atrial fibrillation, one or more pacemaker leads, a coronary sinus access device or the like.
    Type: Application
    Filed: August 27, 2004
    Publication date: June 2, 2005
    Applicant: GUIDED DELIVERY SYSTEMS, INC.
    Inventors: Niel Starksen, Nick Pliam, Rodolfo Morales, John To
  • Publication number: 20050107811
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: May 19, 2005
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Mariel Fabro, Michael Wei, Rodolfo Morales
  • Publication number: 20050107810
    Abstract: Methods and devices provide constriction of a heart valve annulus to treat cardiac valve regurgitation and other conditions. Embodiments typically include a device for attaching a cinching or tightening apparatus to a heart valve annulus to reduce the circumference of the annulus, thus reducing valve regurgitation. Tightening devices may include multiple tethered clips, multiple untethered crimping clips, stabilizing devices, visualization devices, and the like. In one embodiment, a plurality of tethered clips is secured circumferentially to a valve annulus, and the tether coupling the clips is cinched to reduce the circumference of at least a portion of the annulus. Methods and devices may be used in open heart surgical procedures, minimally invasive procedures, catheter-based procedures, and/or procedures on beating hearts or stopped hearts.
    Type: Application
    Filed: February 10, 2004
    Publication date: May 19, 2005
    Applicant: GUIDED DELIVERY SYSTEMS, INC.
    Inventors: Rodolfo Morales, Niel Starksen
  • Publication number: 20050107812
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: May 19, 2005
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Mariel Fabro, Michael Wei, Rodolfo Morales
  • Publication number: 20050065550
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: July 27, 2004
    Publication date: March 24, 2005
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel Starksen, John To, Rodolfo Morales
  • Publication number: 20040243227
    Abstract: Devices, systems and methods facilitate positioning of a cardiac valve annulus treatment device, thus enhancing treatment of the annulus. Methods generally involve advancing an anchor delivery device through vasculature of the patient to a location in the heart for treating the valve annulus, contacting the anchor delivery device with a length of the valve annulus, delivering a plurality of coupled anchors from the anchor delivery device to secure the anchors to the annulus, and drawing the anchors together to circumferentially tighten the valve annulus. Devices generally include an elongate catheter having at least one tensioning member and at least one tensioning actuator for deforming a distal portion of the catheter to help it conform to a valve annulus. The catheter device may be used to navigate a subannular space below a mitral valve to facilitate positioning of an anchor delivery device.
    Type: Application
    Filed: March 2, 2004
    Publication date: December 2, 2004
    Applicant: Guided Delivery Systems, Inc.
    Inventors: Niel F. Starksen, John To, Rodolfo A. Morales
  • Publication number: 20030233142
    Abstract: Methods and devices provide constriction of a heart valve annulus to treat cardiac valve regurgitation and other conditions. Embodiments typically include a device for attaching a cinching or tightening apparatus to a heart valve annulus to reduce the circumference of the annulus, thus reducing valve regurgitation. Tightening devices may include multiple tethered clips, multiple untethered crimping clips, stabilizing devices, visualization devices, and the like. In one embodiment, a plurality of tethered clips is secured circumferentially to a valve annulus, and the tether coupling the clips is cinched to reduce the circumference of at least a portion of the annulus. Methods and devices may be used in open heart surgical procedures, minimally invasive procedures, catheter-based procedures, and/or procedures on beating hearts or stopped hearts.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 18, 2003
    Applicant: GUIDED DELIVERY SYSTEMS, INC.
    Inventors: Rodolfo A. Morales, Niel F. Starksen
  • Patent number: 6102973
    Abstract: A method for imparting durable press and softness characteristics to garments. The initial step of the process is to start with a garment in which the pH is between about 6 and 7. The garments are immersed in a mixture of water, a non-ionic wetter, a glyoxal resin and aminofunctional silicone, and a cationic HDPE in specific amounts, depending upon the type of fabric of which the garments are made. The mixture is extracted from the garments to a specific extent. After mixture extraction, the garments are pressed and baked.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: August 15, 2000
    Inventor: Rodolfo A. Morales