Patents by Inventor Roger C. Thede

Roger C. Thede has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100234769
    Abstract: A method for optimizing the performance of an athlete includes capturing an image of the athlete performing a biomechanical movement. A video signal is generated from the captured image. Ground reaction forces generated by the athlete are measured at the athlete's insoles and are transmitted as force data to a central processing unit. The force data is synchronized with the video signal by the central processing unit for display or storage.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 16, 2010
    Applicant: GFXCoach LLC
    Inventors: Marius Octavian Poliac, Roger C. Thede, Donald A. Chu, Ross Andrew Rosemark
  • Patent number: 7137954
    Abstract: A sensor interface assembly is used with a blood pressure measurement device to determine blood pressure of an underlying artery. The sensor interface assembly includes a base unit, a sensing unit and means for detachably connecting the sensing unit to the base unit. The base unit is pivotally attached to the blood pressure measurement device. The sensing unit includes sensing means for sensing blood pressure of each pulse as each pulse travels beneath the sensing means. The means for detachably connecting mechanically and electrically couple the sensing unit to the base unit.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: November 21, 2006
    Assignee: Medwave, Inc.
    Inventors: Roger C. Thede, Kevin R. Evans
  • Publication number: 20040059230
    Abstract: A sensor interface assembly is used with a blood pressure measurement device to determine blood pressure of an underlying artery. The sensor interface assembly includes a base unit, a sensing unit and means for detachably connecting the sensing unit to the base unit. The base unit is pivotally attached to the blood pressure measurement device. The sensing unit includes sensing means for sensing blood pressure of each pulse as each pulse travels beneath the sensing means. The means for detachably connecting mechanically and electrically couple the sensing unit to the base unit.
    Type: Application
    Filed: September 10, 2003
    Publication date: March 25, 2004
    Applicant: Medwave, Inc.
    Inventors: Roger C. Thede, Kevin R. Evans
  • Patent number: 6695789
    Abstract: A non-invasive blood pressure measurement device is used for determining blood pressure of an artery. The device comprises a housing unit, a base unit and a sensing unit. The base unit is pivotally connected to the housing unit and comprises electrical circuitry, a flexible ring, and a receptacle. The sensing unit comprises a pressure transducer for sensing pulses of the underlying artery, the transducer having a sensing surface, a flexible diaphragm having an active portion for transmitting blood pressure pulses of the underlying artery, interface means coupled between the sensing surface of the transducer and the flexible diaphragm for transmitting the blood pressure pulses within the underlying artery from the flexible diaphragm to the sensing surface of the transducer, a compressible ring, and connection means for detachably connecting the sensing unit to the receptacle of the base unit.
    Type: Grant
    Filed: February 21, 2002
    Date of Patent: February 24, 2004
    Assignee: Medwave, Inc.
    Inventors: Roger C. Thede, Kevin R. Evans
  • Publication number: 20030208127
    Abstract: The present invention is a method for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters.
    Type: Application
    Filed: May 16, 2003
    Publication date: November 6, 2003
    Applicant: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Publication number: 20030158487
    Abstract: A non-invasive blood pressure measurement device is used for determining blood pressure of an artery. The device comprises a housing unit, a base unit and a sensing unit. The base unit is pivotally connected to the housing unit and comprises electrical circuitry, a flexible ring, and a receptacle. The sensing unit comprises a pressure transducer for sensing pulses of the underlying artery, the transducer having a sensing surface, a flexible diaphragm having an active portion for transmitting blood pressure pulses of the underlying artery, interface means coupled between the sensing surface of the transducer and the flexible diaphragm for transmitting the blood pressure pulses within the underlying artery from the flexible diaphragm to the sensing surface of the transducer, a compressible ring, and connection means for detachably connecting the sensing unit to the receptacle of the base unit.
    Type: Application
    Filed: February 21, 2002
    Publication date: August 21, 2003
    Applicant: Medwave, Inc.
    Inventors: Roger C. Thede, Kevin R. Evans
  • Patent number: 6589185
    Abstract: The present invention is a method for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 8, 2003
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6558335
    Abstract: A device for sensing blood pressure of an underlying artery of a patient includes a housing having a sensing region and a pivot region. The sensing region is pivotable about the pivot region in response to a hold down pressure applied at the sensing region by a user. The device includes a sensor interface assembly that is supported by the sensing region. The sensor interface assembly includes a sensing surface suited for engaging tissue adjacent the artery for sensing pressure from the artery. A wrist connection holds the housing adjacent the patient's wrist.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: May 6, 2003
    Assignee: Medwave, Inc
    Inventor: Roger C. Thede
  • Patent number: 6524240
    Abstract: A storage device for storing a plurality of portable medical devices includes a plurality of bays for receiving and storing the plurality of portable medical devices. Each portable medical device includes an electrical connector. Each bay includes a first electrical connector. The first electrical connector of each bay is configured to interface with the electrical connector of one of the portable medical devices. A second electrical connector is configured to be coupled to a computer. A battery charger is coupled to at least one of the first electrical connectors of a bay for charging a battery of one of the portable medical devices. A switch is coupled to the first electrical connector of each bay and coupled to the second electrical connector for selectively coupling each bay to the computer for data transfer between the bay and the computer.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: February 25, 2003
    Assignee: Medwave, Inc.
    Inventor: Roger C. Thede
  • Patent number: 6471646
    Abstract: An arterial line emulator interfaces a non-invasive blood pressure monitor with an invasive blood pressure monitor. The emulator receives pressure waveform signals from the non-invasive blood pressure monitor, and receives a transducer excitation voltage from the invasive blood pressure monitor. The emulator converts the pressure waveform signal from the non-invasive blood pressure monitor into an analog signal which is scaled as a function of the excitation voltage. The scaled analog pressure signal is supplied as an input to the invasive blood pressure monitor, and emulates the signal which would be received from a catheter-based blood pressure transducer.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: October 29, 2002
    Assignee: Medwave, Inc.
    Inventor: Roger C. Thede
  • Patent number: 6340349
    Abstract: A hand-held non-invasive blood pressure measurement device allows a varying pressure to be applied to an artery while pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters. The user is guided or prompted to apply the varying pressure through audible and visual feedback.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: January 22, 2002
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6245022
    Abstract: A non-invasive blood pressure sensor includes a first fluid filled sensing chamber having a diaphragm. A first transducer is fluidly coupled to the first sensing chamber to sense fluid pressure within the first chamber. A flexible body conformable wall surrounds the sensing chamber. The wall applies force to the artery while preventing pressure in a direction generally parallel to the artery from being applied to the sensing chamber. The flexible body conformable wall includes a second fluid filled chamber. A second transducer fluidly coupled to the second chamber senses fluid pressure within the second chamber. As varying pressure is applied to the artery pressure waveforms are sensed by the first transducer. Using output signals of the first and second transducers, the sensed pressure waveform data is analyzed to derive waveform parameters from which blood pressure values are derived. The effects of motion artifacts are reduced by the use of signals from both the first and second transducers.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: June 12, 2001
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6159157
    Abstract: A blood pressure measurement device with a sensor locator for placing a non-invasive blood pressure measurement device over an underlying artery, the sensor locator having a plurality of extending fingers spaced from each other coupled to the non-invasive blood pressure measurement device.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: December 12, 2000
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6132382
    Abstract: A non-invasive blood pressure sensor includes a first fluid filled sensing chamber having a diaphragm. A first transducer is fluidly coupled to the first sensing chamber to sense fluid pressure within the first chamber. A flexible body conformable wall surrounds the sensing chamber. The wall applies force to the artery while preventing pressure in a direction generally parallel to the artery from being applied to the sensing chamber. The flexible body conformable wall includes a second fluid filled chamber. A second transducer fluidly coupled to the second chamber sensing fluid pressure within the second chamber. As varying pressure is applied to the artery pressure waveforms are sensed by the first transducer. Using output signals of the first and second transducers, the sensed pressure waveform data is analyzed to derive waveform parameters from which blood pressure values are derived. The effects of motion artifacts are reduced by the use of signals from both the first and second transducers.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: October 17, 2000
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 6099477
    Abstract: The present invention is a method for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: August 8, 2000
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5941828
    Abstract: A hand-held non-invasive blood pressure measurement device allows a varying pressure to be applied to an artery while pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters. The user is guided or prompted to apply the varying pressure through audible and visual feedback.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: August 24, 1999
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5938618
    Abstract: The present invention is a method for locating a sensor over an underlying artery having a blood pulse. The sensor is positioned at a plurality of locations above a known appoximate location of the artery while applying a constant hold down pressure to the artery. The sensor is finally positioned at the location which exhibits the largest maximum pressure ampltiude.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: August 17, 1999
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5832924
    Abstract: The present invention is a method for locating a sensor over an underlying artery having a blood pulse. The sensor is positioned at a plurality of locations above a known approximate location of the artery while applying a constant hold down pressure to the artery. The sensor is finally positioned at the location which exhibits the largest maximum pressure ampltiude.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: November 10, 1998
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: 5797850
    Abstract: The present invention is a method and apparatus for calculating blood pressure of an artery having a pulse. The method includes applying a varying pressure to the artery. Pressure waveforms are sensed to produce pressure waveform data. Waveform parameters are derived from the sensed pressure waveform data. Blood pressure is then determined using the derived parameters. The apparatus is a blood pressure monitoring device which includes pressure means for applying a varying pressure to the artery so that the artery exhibits pressure data, sensing means for sensing the pressure data, signal producing means connected to the sensing means for producing output signals corresponding to the sensed pressure data and processing means for receiving the output signals from the signal producing means, for deriving a plurality of parameters using sensed pressures and for determining a blood pressure value using the derived parameters.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: August 25, 1998
    Assignee: Medwave, Inc.
    Inventors: G. Kent Archibald, Timothy G. Curran, Orland H. Danielson, Marius O. Poliac, Roger C. Thede
  • Patent number: D458375
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: June 4, 2002
    Assignee: Medwave, Inc.
    Inventor: Roger C. Thede