Patents by Inventor Roger D. Van Gelder

Roger D. Van Gelder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6566411
    Abstract: An integrated process for producing desulfurized hydroprocessed products from Fischer-Tropsch synthesis is disclosed. The process involves isolating and desulfurizing a methane-rich stream from a natural gas source in a first separation zone and a desulfurization zone. The methane-rich stream is converted to syngas and subjected to a hydrocarbon synthesis step, for example, a Fischer-Tropsch synthesis step. The products from the hydrocarbon synthesis step typically include a C4− fraction, a C5-20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone, typically via fractional distillation. The C4− fraction can be recycled through the first separation zone to provide a second methane-rich fraction for conversion to synthesis gas. The C4− fraction can optionally be treated, for example, with hydrotreatment or hydroisomerization catalysts and conditions before or after passage through the first separation zone.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: May 20, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder, Grant C. Hilton, Clive Jones
  • Patent number: 6531515
    Abstract: An integrated process for improved hydrocarbon recovery from a natural gas resource is disclosed. A methane-rich stream, an LPG stream and optionally a C5+ stream are isolated from a natural gas source in a first separation zone and desulfurized. The methane-rich stream is converted to syngas and subjected to hydrocarbon synthesis, for example, Fischer-Tropsch synthesis. The products from the hydrocarbon synthesis typically include a C4− fraction, a C5-C20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone. The C4− fraction is recycled through the first separation zone to provide methane for conversion to synthesis gas and an additional LPG fraction. The C4− fraction can be treated, for example, with hydrotreating or hydroisomerization catalysts and conditions before or after the separation.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 11, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder, Grant C. Hilton, Clive Jones, Randall B. Pruet
  • Patent number: 6515033
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. The process involves isolating a non-sulfur containing methane stream and a sulfur-containing C5+ stream from a natural gas source. The methane stream is converted to syngas and further reacted to form a higher molecular weight hydrocarbon product stream. The C5-20 hydrocarbons in that product stream are hydroprocessed along with at least a portion of the C5+ stream from the natural gas source. The presence of sulfur in the C5+ stream minimizes the hydrogenolysis that would otherwise occur if the C5-20 hydrocarbons were hydroprocessed without added sulfur-containing compounds or other hydrocracking suppressants. The result is an improved yield of C5-20 hydrocarbons relative to when the hydroprocessing step does not include hydrocracking suppressants.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Patent number: 6515034
    Abstract: An integrated process for producing a hydrocarbon stream, preferably including predominantly C5-20 normal and iso-paraffins, is disclosed. The process involves isolating a C4− stream and, optionally a C5+ stream (“natural gas condensate”) from a natural gas source. The C4− stream is converted to syngas, and the syngas used in a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. In one embodiment, one or more fractions from the hydrocarbon synthesis are blended with one or more crude oil derived fractions, and, optionally, the natural gas condensate, such that the overall sulfur content of the blend is less than about 200 ppm. If necessary, the crude oil fractions and/or natural gas condensate can be treated to lower the sulfur content so that the blend has an acceptable sulfur level. The fraction from the hydrocarbon synthesis may include, for example, C5-20 hydrocarbons, C20+ hydrocarbons, or C5+ hydrocarbons.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Patent number: 6515032
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. A de-sulfurized methane-rich stream and a natural gas condensate are isolated from the natural gas source. The methane-containing stream is converted into syngas, which is then subjected to a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. One or more fractions from the hydrocarbon synthesis are blended with the natural gas condensate for co-hydroprocessing, where the blended stream includes less than about 200 ppm sulfur. Olefins and oxygenates are hydrotreated to form paraffins. Paraffins are subjected to hydroisomerization conditions to form isoparaffins. Hydrocarbons with chain lengths above a desired value, for example, C24, are hydrocracked. The hydrogenolysis that would otherwise form undesired C1-4 fractions is minimized by judicious selection of noble metal catalysts.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: February 4, 2003
    Assignee: Chevron U.S.A. Inc.
    Inventors: Richard O. Moore, Jr., Roger D. Van Gelder
  • Publication number: 20020169218
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. A de-sulfurized methane-rich stream and a natural gas condensate are isolated from the natural gas source. The methane-containing stream is converted into syngas, which is then subjected to a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. One or more fractions from the hydrocarbon synthesis are blended with the natural gas condensate for co-hydroprocessing, where the blended stream includes less than about 200 ppm sulfur. Olefins and oxygenates are hydrotreated to form paraffins. Paraffins are subjected to hydroisomerization conditions to form isoparaffins. Hydrocarbons with chain lengths above a desired value, for example, C24, are hydrocracked. The hydrogenolysis that would otherwise form undesired C1-4 fractions is minimized by judicious selection of noble metal catalysts.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 14, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder
  • Publication number: 20020169220
    Abstract: An integrated process for producing a hydrocarbon stream, preferably including predominantly C5-20 normal and iso-paraffins, is disclosed. The process involves isolating a C4− stream and, optionally a C5+ stream (“natural gas condensate”) from a natural gas source. The C4− stream is converted to syngas, and the syngas used in a hydrocarbon synthesis process, for example, Fischer-Tropsch synthesis. In one embodiment, one or more fractions from the hydrocarbon synthesis are blended with one or more crude oil derived fractions, and, optionally, the natural gas condensate, such that the overall sulfur content of the blend is less than about 200 ppm. If necessary, the crude oil fractions and/or natural gas condensate can be treated to lower the sulfur content so that the blend has an acceptable sulfur level. The fraction from the hydrocarbon synthesis may include, for example, C5-20 hydrocarbons, C20+ hydrocarbons, or C5+ hydrocarbons.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 14, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder
  • Publication number: 20020169219
    Abstract: An integrated process for producing a hydrocarbon stream including C5-20 normal and iso-paraffins is disclosed. The process involves isolating a non-sulfur containing methane stream and a sulfur-containing C5+ stream from a natural gas source. The methane stream is converted to syngas and further reacted to form a higher molecular weight hydrocarbon product stream. The C5-20 hydrocarbons in that product stream are hydroprocessed along with at least a portion of the C5+ stream from the natural gas source. The presence of sulfur in the C5+ stream minimizes the hydrogenolysis that would otherwise occur if the C5-20 hydrocarbons were hydroprocessed without added sulfur-containing compounds or other hydrocracking suppressants. The result is an improved yield of C5-20 hydrocarbons relative to when the hydroprocessing step does not include hydrocracking suppressants.
    Type: Application
    Filed: May 11, 2001
    Publication date: November 14, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder
  • Publication number: 20020120018
    Abstract: An integrated process for improved hydrocarbon recovery from a natural gas resource is disclosed. A methane-rich stream, an LPG stream and optionally a C5+ stream are isolated from a natural gas source in a first separation zone and desulfurized. The methane-rich stream is converted to syngas and subjected to hydrocarbon synthesis, for example, Fischer-Tropsch synthesis. The products from the hydrocarbon synthesis typically include a C4− fraction, a C5-C20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone. The C4− fraction is recycled through the first separation zone to provide methane for conversion to synthesis gas and an additional LPG fraction. The C4− fraction can be treated, for example, with hydrotreating or hydroisomerization catalysts and conditions before or after the separation.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 29, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder, Grant C. Hilton, Clive Jones, Randall B. Pruet
  • Publication number: 20020115732
    Abstract: An integrated process for producing desulfurized hydroprocessed products from Fischer-Tropsch synthesis is disclosed. The process involves isolating and desulfurizing a methane-rich stream from a natural gas source in a first separation zone and a desulfurization zone. The methane-rich stream is converted to syngas and subjected to a hydrocarbon synthesis step, for example, a Fischer-Tropsch synthesis step. The products from the hydrocarbon synthesis step typically include a C4− fraction, a C5-20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone, typically via fractional distillation. The C4− fraction can be recycled through the first separation zone to provide a second methane-rich fraction for conversion to synthesis gas. The C4− fraction can optionally be treated, for example, with hydrotreatment or hydroisomerization catalysts and conditions before or after passage through the first separation zone.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 22, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder, Grant C. Hilton, Clive Jones