Patents by Inventor Roger David Carpenter
Roger David Carpenter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240249058Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: ApplicationFiled: December 22, 2023Publication date: July 25, 2024Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Publication number: 20240143885Abstract: Aspects of the disclosure provide for eliminating or reducing uniquification of blocks in a chip-level graph of a computer chip, to reduce the size of the graph while still encoding block-specific information. For each group of blocks in the graph generated from a multiply-instantiated block (MIB), a block in the group is selected as a base block. The physical position of the base block is encoded in a reduced graph, and the physical positions of the remaining blocks are encoded as a linear transformation of the physical position of the base block across the face of the chip. Each group of blocks instantiated from the same MIB is represented as a single instance. The reduced graph can be fed into a device configured to perform a circuit component placement process, to identify the placement of circuit components for blocks in the chip in accordance with one or more objectives.Type: ApplicationFiled: October 25, 2022Publication date: May 2, 2024Inventors: Myung-Chul Kim, Roger David Carpenter, Debjit Sinha, Paul Kingsley Rodman, Xuyang Jin, Young-Joon Lee
-
Patent number: 11853677Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: GrantFiled: December 15, 2022Date of Patent: December 26, 2023Assignee: Google LLCInventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Publication number: 20230117786Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: ApplicationFiled: December 15, 2022Publication date: April 20, 2023Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Patent number: 11556690Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: GrantFiled: December 17, 2021Date of Patent: January 17, 2023Assignee: Google LLCInventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Publication number: 20220108058Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: ApplicationFiled: December 17, 2021Publication date: April 7, 2022Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Patent number: 11216609Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: GrantFiled: April 22, 2021Date of Patent: January 4, 2022Assignee: Google LLCInventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-Min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Publication number: 20210334445Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating a computer chip placement. One of the methods includes obtaining netlist data for a computer chip; and generating a computer chip placement, comprising placing a respective macro node at each time step in a sequence comprising a plurality of time steps, the placing comprising, for each time step: generating an input representation for the time step; processing the input representation using a node placement neural network having a plurality of network parameters, wherein the node placement neural network is configured to process the input representation in accordance with current values of the network parameters to generate a score distribution over a plurality of positions on the surface of the computer chip; and assigning the macro node to be placed at the time step to a position from the plurality of positions using the score distribution.Type: ApplicationFiled: April 22, 2021Publication date: October 28, 2021Inventors: Anna Darling Goldie, Azalia Mirhoseini, Ebrahim Songhori, Wenjie Jiang, Shen Wang, Roger David Carpenter, Young-Joon Lee, Mustafa Nazim Yazgan, Chian-min Richard Ho, Quoc V. Le, James Laudon, Jeffrey Adgate Dean, Kavya Srinivasa Setty, Omkar Pathak
-
Patent number: 10318691Abstract: Methods and systems for timing analysis and optimization of asynchronous circuit designs are disclosed. Registration stages are placed between combinational logic circuits. For timing purposes, the registration stages are modified to have a duplicate set of pins. New paths are formed in the circuit for the purposes of timing analysis. The paths are analyzable by timing tools. Once the timing analysis is complete, the paths are reverted to original paths, and new devices are selected for the circuit design based on results of the timing analysis. An updated design is sent for manufacture, based on the timing analysis and optimization of the asynchronous circuit.Type: GrantFiled: June 20, 2017Date of Patent: June 11, 2019Assignee: Wave Computing, Inc.Inventors: Philippe Francis Sarrazin, Roger David Carpenter
-
Publication number: 20170371993Abstract: Methods and systems for timing analysis and optimization of asynchronous circuit designs are disclosed. Registration stages are placed between combinational logic circuits. For timing purposes, the registration stages are modified to have a duplicate set of pins. New paths are formed in the circuit for the purposes of timing analysis. The paths are analyzable by timing tools. Once the timing analysis is complete, the paths are reverted to original paths, and new devices are selected for the circuit design based on results of the timing analysis. An updated design is sent for manufacture, based on the timing analysis and optimization of the asynchronous circuit.Type: ApplicationFiled: June 20, 2017Publication date: December 28, 2017Inventors: Philippe Francis Sarrazin, Roger David Carpenter