Patents by Inventor Roger David SERWY

Roger David SERWY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11790931
    Abstract: A first VAD system outputs a pulse stream for zero crossings in an audio signal. The pulse density of the pulse stream is evaluated to identify speech. The audio signal may have noise added to it before evaluating zero crossings. A second VAD system rectifies each audio signal sample and processes each rectified sample by updating a first statistic and evaluating the rectified sample per a first threshold condition that is a function of the first statistic. Rectified samples meeting the first threshold condition may be used to update a second statistic and the rectified sample evaluated per a second threshold condition that is a function of the second statistic. Rectified samples meeting the second threshold condition may be used to update a third statistic. The audio signal sample may be selected as speech if the second statistic is less than a downscaled third statistic.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: October 17, 2023
    Assignee: Ambiq Micro, Inc.
    Inventor: Roger David Serwy
  • Publication number: 20220130405
    Abstract: A first VAD system outputs a pulse stream for zero crossings in an audio signal. The pulse density of the pulse stream is evaluated to identify speech. The audio signal may have noise added to it before evaluating zero crossings. A second VAD system rectifies each audio signal sample and processes each rectified sample by updating a first statistic and evaluating the rectified sample per a first threshold condition that is a function of the first statistic. Rectified samples meeting the first threshold condition may be used to update a second statistic and the rectified sample evaluated per a second threshold condition that is a function of the second statistic. Rectified samples meeting the second threshold condition may be used to update a third statistic. The audio signal sample may be selected as speech if the second statistic is less than a downscaled third statistic.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventor: Roger David Serwy
  • Publication number: 20220130410
    Abstract: A first VAD system outputs a pulse stream for zero crossings in an audio signal. The pulse density of the pulse stream is evaluated to identify speech. The audio signal may have noise added to it before evaluating zero crossings. A second VAD system rectifies each audio signal sample and processes each rectified sample by updating a first statistic and evaluating the rectified sample per a first threshold condition that is a function of the first statistic. Rectified samples meeting the first threshold condition may be used to update a second statistic and the rectified sample evaluated per a second threshold condition that is a function of the second statistic. Rectified samples meeting the second threshold condition may be used to update a third statistic. The audio signal sample may be selected as speech if the second statistic is less than a downscaled third statistic.
    Type: Application
    Filed: October 27, 2020
    Publication date: April 28, 2022
    Inventor: Roger David Serwy
  • Patent number: 10616683
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system receives a digital audio signal comprising a plurality of samples at an input node. A delay block delays the digital audio signal and a gain block applies a controlled gain to the delayed digital audio signal. An excursion predictor is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller controls a gain setting of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: April 7, 2020
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Roger David Serwy, Roberto Napoli
  • Patent number: 10356521
    Abstract: This application describes methods and apparatus for loudspeaker protection. A loudspeaker protection system (1100) is described having a first frequency band-splitter (102) for splitting an input audio signal (Vin) into a plurality of audio signals (v1, v2 . . . ,vn) in different respective frequency bands (?1, ?2 . . . ??). A first gain block (103) is configured to apply a respective frequency band gain (gt1, gt2 . . . ,gt3) to each of the audio signals in the different respective frequency bands and a gain controller (109; 1101) is provided for controlling the respective band gains. A thermal controller (1101) determines, for each of a plurality of the different respective frequency bands, a power dissipation for the loudspeaker in that frequency band and also determines a respective thermal gain setting based on the determined power dissipation for that frequency band. The gain controller is configured to control the respective frequency band gains based on the thermal gain settings.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: July 16, 2019
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Roberto Napoli, Roger David Serwy, Jie Su, Stefan Williams, Rong Hu, Firas Azrai
  • Publication number: 20190124444
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system receives a digital audio signal comprising a plurality of samples at an input node. A delay block delays the digital audio signal and a gain block applies a controlled gain to the delayed digital audio signal. An excursion predictor is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller controls a gain setting of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Application
    Filed: December 19, 2018
    Publication date: April 25, 2019
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Jason William LAWRENCE, Roger David SERWY, Roberto NAPOLI
  • Patent number: 10206038
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system (100) receives a digital audio signal comprising a plurality of samples at an input node (IN). A delay block (15) delays the digital audio signal and a gain block (14) applies a controlled gain to the delayed digital audio signal. An excursion predictor (12) is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller (23) controls a gain setting (g) of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller (23) is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 12, 2019
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Roger David Serwy, Roberto Napoli
  • Publication number: 20180184201
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system (100) receives a digital audio signal comprising a plurality of samples at an input node (IN). A delay block (15) delays the digital audio signal and a gain block (14) applies a controlled gain to the delayed digital audio signal. An excursion predictor (12) is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller (23) controls a gain setting (g) of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller (23) is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Jason William LAWRENCE, Roger David SERWY, Roberto NAPOLI
  • Patent number: 9942657
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system (100) receives a digital audio signal comprising a plurality of samples at an input node (IN). A delay block (15) delays the digital audio signal and a gain block (14) applies a controlled gain to the delayed digital audio signal. An excursion predictor (12) is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller (23) controls a gain setting (g) of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller (23) is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: April 10, 2018
    Assignee: Cirrus Logic, Inc.
    Inventors: Jason William Lawrence, Roger David Serwy, Roberto Napoli
  • Publication number: 20180014120
    Abstract: This application describes methods and apparatus for loudspeaker protection. A loudspeaker protection system (1100) is described having a first frequency band-splitter (102) for splitting an input audio signal (Vin) into a plurality of audio signals (v1, v2 . . . ,vn) in different respective frequency bands (?1, ?2 . . . ??). A first gain block (103) is configured to apply a respective frequency band gain (gt1, gt2 . . . ,gt3) to each of the audio signals in the different respective frequency bands and a gain controller (109; 1101) is provided for controlling the respective band gains. A thermal controller (1101) determines, for each of a plurality of the different respective frequency bands, a power dissipation for the loudspeaker in that frequency band and also determines a respective thermal gain setting based on the determined power dissipation for that frequency band. The gain controller is configured to control the respective frequency band gains based on the thermal gain settings.
    Type: Application
    Filed: February 1, 2016
    Publication date: January 11, 2018
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Jason William LAWRENCE, Roberto NAPOLI, Roger David SERWY, Jie SU, Stefan WILLIAMS, Rong HU, Firas AZRAI
  • Publication number: 20160373858
    Abstract: This application relates to methods and apparatus for loudspeaker protection. A loudspeaker protection system (100) receives a digital audio signal comprising a plurality of samples at an input node (IN). A delay block (15) delays the digital audio signal and a gain block (14) applies a controlled gain to the delayed digital audio signal. An excursion predictor (12) is configured to receive a version of the audio signal from the signal path upstream of the delay block and determine a predicted excursion for a loudspeaker based on the audio signal. A gain controller (23) controls a gain setting (g) of the gain block in response to the predicted excursion and a first loudspeaker impulse response model and a predetermined excursion limit. The gain controller (23) is configured to determine at least one gain setting {ga gi} to be applied to a set of samples {Va . . .
    Type: Application
    Filed: June 20, 2016
    Publication date: December 22, 2016
    Applicant: Cirrus Logic International Semiconductor Ltd.
    Inventors: Jason William LAWRENCE, Roger David SERWY, Roberto NAPOLI