Patents by Inventor Roger Dzwonczyk

Roger Dzwonczyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9132253
    Abstract: A resuscitation system for the administration of cardiopulmonary resuscitation of asthma patients, and for teaching the cardiopulmonary resuscitation of asthma patients. The invention includes a deflatable bag and a gas flow channel connected with said bag, for connection with an indwelling endotracheal tube so that gas can flow from the bag into the patient and from said patient through said flow channel, an exhalation port in flow connection with said flow channel and an indicator mounted adjacent said system for detecting expiration flow and/or pressure within at least one of said flow channel and exhalation port to detect inadequacy in the expiratory component of ventilation during CPR and to train healthcare workers in the emergency ventilation of severe asthmatic patients in the field and emergency room.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: September 15, 2015
    Inventors: Lawrence A. Lynn, Roger Dzwonczyk, Russell P. Woda
  • Publication number: 20060235326
    Abstract: A method for detecting a quantitative measure of a physiologic state of a human myocardium or coronary artery. Implementations of the method detect the extent of change of myocardial electrical impedance from a mean baseline value to provide diagnosis of the extent of ischemia, stenosis, tissue rejection, and reperfusion and the effectiveness of cardioplegia and ischemia pre-conditioning as well as the general effectiveness of coronary bypass surgery as measured by post-operative reperfusion. Electrodes are attached to the myocardium, baseline measurements of the mean myocardial electrical impedance are stored and the variance of the myocardial electrical impedance and a baseline value of mean myocardial electrical impedance are computed from the baseline measurements and stored. Mean myocardial electrical impedance values are periodically measured between each electrode pair over an interval of time and stored.
    Type: Application
    Filed: May 28, 2004
    Publication date: October 19, 2006
    Inventors: Roger Dzwonczyk, Carlos Del Rio, Patrick Connell, Michael Howie
  • Publication number: 20020117173
    Abstract: A resuscitation system for the administration of cardiopulmonary resuscitation of asthma patients, and for teaching the cardiopulmonary resuscitation of asthma patients. The invention includes a deflatable bag and a gas flow channel connected with said bag, for connection with an indwelling endotracheal tube so that gas can flow from the bag into the patient and from said patient through said flow channel, an exhalation port in flow connection with said flow channel and an indicator mounted adjacent said system for detecting expiration flow and/or pressure within at least one of said flow channel and exhalation port to detect inadequacy in the expiratory component of ventilation during CPR and to train healthcare workers in the emergency ventilation of severe asthmatic patients in the field and emergency room.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 29, 2002
    Applicant: Lawrence A. Lynn
    Inventors: Lawrence A. Lynn, Roger Dzwonczyk, Russell P. Woda
  • Patent number: 5077667
    Abstract: The approximate elapsed time since the onset of ventricular fibrillation is detected from an analog electrocardiogram signal. The signal is digitized for a time interval of four seconds to obtain a data set of time domain samples. These time domain samples are Fourier transformed to a frequency domain spectrum and the median frequency which bisects the energy of the power spectrum is detected. That median frequency is then compared to a pattern of experimentally obtained median frequency data as represented by a mathematical algorithm to calculate the estimated time from the onset of ventricular fibrillation. This frequency parameter can also be used to evaluate the response to therapy during ventricular fibrillation and CPR, as well as estimate the most appropriate time to defibrillate a subject following various pharmacologic and mechanical intervention.
    Type: Grant
    Filed: June 13, 1990
    Date of Patent: December 31, 1991
    Assignee: The Ohio State University
    Inventors: Charles G. Brown, Roger Dzwonczyk