Patents by Inventor Roger Farrow

Roger Farrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108842
    Abstract: A headgear assembly for retaining a respiratory mask on a user's face includes arrangements or components that allow for variation in a size of the headgear assembly. In some configurations, the headgear assembly includes one or more hubs, each of which are configured to connect a top and rear strap together. The size of the headgear assembly can be determined by the size or configuration of the hub. In other configurations, the headgear assembly comprises one or more spacer elements within one or more straps of the headgear. The size of the headgear assembly can be determined by the size of the spacer element or a relative position between the strap and the spacer element.
    Type: Application
    Filed: November 6, 2023
    Publication date: April 4, 2024
    Inventors: Paul Mathew Freestone, Melissa Catherine Bornholdt, Matthew Roger Stephenson, Jake Baker Hocking, Bruce Michael Walls, Chris Onin Limpin Hipolito, Jonathan Tong Lok Sng, Abby Rebecca Farrow
  • Patent number: 11886053
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: January 30, 2024
    Assignee: NLIGHT, INC.
    Inventors: Ken Gross, Brian Victor, Robert J. Martinsen, Dahv A. V. Kliner, Roger Farrow
  • Patent number: 11886052
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: January 30, 2024
    Assignee: nLIGHT, Inc
    Inventors: Dahv A. V. Kliner, Roger Farrow
  • Patent number: 11831121
    Abstract: Some embodiments may include a fiber laser including two or more input fibers and an output fiber to deliver a beam to a workpiece, the fiber laser comprising. The fiber laser may include a combiner having ends and a length, wherein the combiner is arranged to release, from its length, a portion of back-reflected light received from the output fiber at an output end of the ends from the combiner, the combiner including: a capillary tube to enclose part of the two or more input fibers at an input end of the ends of the combiner, the capillary tube having ends and a length located between the ends of the capillary tube; and a cladding light stripper (CLS) defined by part of the length of the capillary tube, wherein the CLS provides the release of the portion of the back-reflected light. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: November 28, 2023
    Assignee: NLIGHT, INC.
    Inventors: Juan Carlos Lugo, Teemu Kokki, Roger Farrow, Dahv A. V. Kliner
  • Publication number: 20230275389
    Abstract: Optical fiber structures for generating a single mode, saddle shaped output beam include first and second lengths of fiber. The first length of fiber has a first input end configured to receive a single mode gaussian beam. The second length of fiber has a second input end coupled to an output end of the first length of fiber. The second length of fiber includes a centrally located anti-guiding core and an annular guiding region coaxially encompassing the centrally located anti-guiding core.
    Type: Application
    Filed: July 14, 2021
    Publication date: August 31, 2023
    Inventors: Christopher Luetjen, Roger Farrow
  • Publication number: 20230036091
    Abstract: Some embodiments may include a fiber laser including two or more input fibers and an output fiber to deliver a beam to a workpiece, the fiber laser comprising. The fiber laser may include a combiner having ends and a length, wherein the combiner is arranged to release, from its length, a portion of back-reflected light received from the output fiber at an output end of the ends from the combiner, the combiner including: a capillary tube to enclose part of the two or more input fibers at an input end of the ends of the combiner, the capillary tube having ends and a length located between the ends of the capillary tube; and a cladding light stripper (CLS) defined by part of the length of the capillary tube, wherein the CLS provides the release of the portion of the back-reflected light. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: January 28, 2021
    Publication date: February 2, 2023
    Applicant: NLIGHT, INC.
    Inventors: Juan Carlos LUGO, Teemu KOKKI, Roger FARROW, Dahv A.V. KLINER
  • Publication number: 20220404648
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Application
    Filed: June 30, 2022
    Publication date: December 22, 2022
    Applicant: NLIGHT, INC.
    Inventors: Ken GROSS, Brian VICTOR, Robert J. MARTINSEN, Dahv A.V. KLINER, Roger FARROW
  • Publication number: 20210286200
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Application
    Filed: December 18, 2020
    Publication date: September 16, 2021
    Applicant: NLIGHT, INC.
    Inventors: Ken GROSS, Brian VICTOR, Robert MARTINSEN, Dahv A.V. KLINER, Roger FARROW
  • Patent number: 10877220
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: December 29, 2020
    Assignee: NLIGHT, INC.
    Inventors: Ken Gross, Brian Victor, Robert Martinsen, Dahv A. V. Kliner, Roger Farrow
  • Publication number: 20200333640
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Applicant: nLIGHT, Inc.
    Inventors: Dahv A.V. Kliner, Roger Farrow
  • Publication number: 20200319408
    Abstract: A method of processing by controlling one or more beam characteristics of an optical beam may include: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP and one or more confinement regions; modifying the one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; confining the modified one or more beam characteristics of the optical beam within the one or more confinement regions of the second length of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP may differ from the second RIP.
    Type: Application
    Filed: January 30, 2018
    Publication date: October 8, 2020
    Applicant: nLIGHT, Inc.
    Inventors: Ken GROSS, Brian VICTOR, Robert MARTINSEN, Dahv A.V. KLINER, Roger FARROW
  • Patent number: 10739621
    Abstract: A method of materials processing using an optical beam includes: launching the optical beam into a first length of fiber having a first refractive-index profile (RIP); coupling the optical beam from the first length of fiber into a second length of fiber having a second RIP; modifying one or more beam characteristics of the optical beam in the first length of fiber, in the second length of fiber, or in the first and second lengths of fiber; and/or generating an output beam, having the modified one or more beam characteristics of the optical beam, from the second length of fiber. The first RIP can be the same as or differ from the second RIP. The modifying of the one or more beam characteristics can include changing the one or more beam characteristics from a first state to a second state. The first state can differ from the second state.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: August 11, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Brian Victor, Christopher A. Rivera, Dahv A.V. Kliner, Roger Farrow
  • Patent number: 10732440
    Abstract: Disclosed herein are methods, apparatus, and systems for providing an optical beam delivery system, comprising an optical fiber including a first length of fiber comprising a first RIP formed to enable, at least in part, modification of one or more beam characteristics of an optical beam by a perturbation assembly arranged to modify the one or more beam characteristics, the perturbation assembly coupled to the first length of fiber or integral with the first length of fiber, or a combination thereof and a second length of fiber coupled to the first length of fiber and having a second RIP formed to preserve at least a portion of the one or more beam characteristics of the optical beam modified by the perturbation assembly within one or more first confinement regions.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: August 4, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10690928
    Abstract: An apparatus for heat deposition in additive manufacturing may include: a first optical beam source configured to generate a first optical beam; a second optical beam source configured to generate a second optical beam; and/or an optical system. The optical system may be configured to move the generated first optical beam over a target area. The optical system may be further configured to move the generated second optical beam over the target area so that a path of the second optical beam moving over the target area is dithered about a path of the first optical beam moving over the target area. The optical system may be configured to focus the generated first optical beam at a plane of a target area. The optical system may be further configured to focus the generated second optical beam at the plane of the target area.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: June 23, 2020
    Assignee: NLIGHT, INC.
    Inventors: Scott Karlsen, Robert Martinsen, Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10682726
    Abstract: An optical beam delivery device. The device comprises a first length of fiber comprising a first RIP formed to enable the adjusting of one or more beam characteristics of an optical beam by a perturbation device. The optical beam delivery device further comprises a second length of fiber having a proximal end for receiving the optical beam from the first length of fiber and a distal end. The proximal end is coupled to the first length of fiber. The second length of fiber comprises a second RIP formed to confine at least a portion of the optical beam within one or more confinement regions. A beam modification structure is disposed at, or a distance from, the distal end of the second length of fiber. The beam modification structure is configured to modify at least one property of the optical beam chosen from beam divergence properties, beam spatial properties and beam directional characteristics.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: June 16, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Ken Gross, Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10684487
    Abstract: An optical beam delivery system, includes: an optical beam source; a fiber assembly situated to receive and modify one or more beam characteristics of an optical beam; and a nonlinear frequency-conversion stage in optical communication with the fiber assembly and situated to receive and frequency-convert an optical beam from a first wavelength to one or more second wavelengths. The fiber assembly includes: a first length of fiber comprising a first RIP formed to enable modification of the one or more beam characteristics of the optical beam by a perturbation device, and a second length of fiber having a second RIP coupled to the first length of fiber, the second RIP formed to confine at least a portion of modified beam characteristics of the optical beam within one or more confinement regions. The first RIP and the second RIP are different.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: June 16, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Brian Victor, Jacob L. Bell, Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10673197
    Abstract: Methods, apparatus, and systems for modulation of a laser beam. An optical modulator may comprise an optical input to receive an optical beam, and one or more lengths of fiber between the optical input and an optical output. At least one of the lengths of fiber comprises a confinement region that is optically coupled to the output. The optical modulator may further comprise a perturbation device to modulate, through action upon the one or more lengths of fiber, a transmittance of the beam through the confinement region from a first transmittance level at a first time instance to a second transmittance level at a second time instance. The optical modulator may further comprise a controller input coupled to the perturbation device, wherein the perturbation device is to act upon the one or more lengths of fiber in response to a control signal received through the controller input.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 2, 2020
    Assignee: NLIGHT, INC.
    Inventors: Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10668535
    Abstract: A method of making a three-dimensional object. The method comprises: a) positioning a layer of particles over a build plate; b) exposing the layer of particles to a first laser beam having a first set of beam characteristics, thereby heating the layer sufficiently to fuse at least a portion of the particles together to form a build layer; c) exposing a first region of one of i) the layer of particles or ii) the build layer to a second laser beam having a second set of beam characteristics to provide a first temperature profile for the first region; and d) exposing a second region of one of i) the layer of particles or ii) the build layer to a third laser beam having a third set of beam characteristics to provide a second temperature profile for the second region, the second temperature profile being different than the first temperature profile, wherein both the first region and the second region are in the layer of particles or both the first region and the second region are in the build layer.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: June 2, 2020
    Assignee: NLIGHT, INC.
    Inventors: Aaron Brown, Keith Kennedy, David Dawson, Robert Martinsen, Roger Farrow, Dahv A. V. Kliner
  • Patent number: 10668537
    Abstract: An apparatus for temperature control in additive manufacturing may include: an optical beam source configured to generate one or more optical beams; a homogenizer configured to flatten an irradiance profile of the generated one or more optical beams; and/or an optical system configured to form the generated one or more optical beams so as to match a portion of a shape of a powder bed. The apparatus may include optical beam sources configured to generate two or more optical beams; and/or an optical system configured to form the generated two or more optical beams to match the portion of the shape of the powder bed. The apparatus, using the formed one or more optical beams with the flattened irradiance profile or using the formed two or more optical beams, may be configured to pre-heat the powder bed prior to fusing and/or to post-heat the fused powder bed.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: June 2, 2020
    Assignee: NLIGHT, INC.
    Inventors: Scott Karlsen, Dahv A. V. Kliner, Roger Farrow
  • Patent number: 10661391
    Abstract: A method of making a porous three-dimensional object.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: May 26, 2020
    Assignee: NLIGHT, INC.
    Inventors: Aaron Brown, Brian Victor, Robert Martinsen, Dahv A. V. Kliner, Roger Farrow