Patents by Inventor Roger J. Chen

Roger J. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10330633
    Abstract: A system for communicating information from an array of sensors is disclosed. The system comprises a sensor array that includes a plurality of sensors, wherein each sensor senses a physical property of a material that is in communication with the sensor. The system further comprises signal processing circuitry associated with each sensor that integrates the output of the sensor over time and compares the integrated output to a threshold. The system further comprises a communication network coupled to the signal processing circuitry that outputs information indicating that the integrated output corresponding to a given sensor has reached the threshold.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: June 25, 2019
    Assignee: Genia Technologies, Inc.
    Inventor: Roger J. A. Chen
  • Publication number: 20190154623
    Abstract: A system for detecting electrical properties of a molecular complex is disclosed. The system includes an electrode electrically coupled to a molecular complex that outputs an electrical signal affected by an electrical property of the molecular complex, wherein the effect of the electrical property of the molecular complex on the electrical signal is characterized by an expected bandwidth. The system further includes an integrating amplifier circuit configured to receive the electrical signal from the electrode. The integrating amplifier circuit is further configured to selectively amplify and integrate a portion of the electrical signal over time within a predetermined bandwidth, wherein the predetermined bandwidth is selected at least in part based on the expected bandwidth.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 23, 2019
    Inventor: Roger J.A. Chen
  • Publication number: 20190144934
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Application
    Filed: November 12, 2018
    Publication date: May 16, 2019
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J. A. Chen
  • Publication number: 20190079049
    Abstract: A method of identifying a molecule is disclosed. A molecule is drawn to a nanopore by applying a first voltage signal to a pair of electrodes during a first period, wherein the first voltage signal causes a first ionic current through the nanopore that is indicative of a property of a portion of the molecule proximate to the nanopore. The molecule is released from the nanopore by applying a second voltage signal to the pair of electrodes during a second period, wherein the second voltage signal causes a second ionic current through the nanopore. The first period and the second period are determined based at least in part on a net ionic current through the nanopore comprising the first ionic current and the second ionic current.
    Type: Application
    Filed: October 10, 2018
    Publication date: March 14, 2019
    Inventor: Roger J.A. Chen
  • Publication number: 20190070796
    Abstract: Techniques for forming a nanopore in a lipid bilayer are described herein. In one example, an agitation stimulus level such as an electrical agitation stimulus is applied to a lipid bilayer wherein the agitation stimulus level tends to facilitate the formation of nanopores in the lipid bilayer. In some embodiments, a change in an electrical property of the lipid bilayer resulting from the formation of the nanopore in the lipid bilayer is detected, and a nanopore has formed in the lipid bilayer is determined based on the detected change in the lipid bilayer electrical property.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 7, 2019
    Inventors: Roger J.A. Chen, Randy Davis
  • Publication number: 20190064141
    Abstract: A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Roger J.A. Chen, Hui Tian, Santiago Fernandez-Gomez
  • Publication number: 20190064107
    Abstract: A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
    Type: Application
    Filed: October 26, 2018
    Publication date: February 28, 2019
    Inventors: Kevin Deierling, Roger J.A. Chen, David J. Fullagar
  • Patent number: 10215731
    Abstract: A method of analyzing a molecule in a nanopore is disclosed. A voltage is applied across a nanopore that is inserted in a membrane by coupling the nanopore to a voltage source. The nanopore is decoupled from the voltage source. After the decoupling, a rate of decay of the voltage across the nanopore is determined. A molecule in the nanopore is distinguished from other possible molecules based on the determined rate of decay of the voltage across the nanopore.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: February 26, 2019
    Assignee: Genia Technologies, Inc.
    Inventors: Roger J. A. Chen, Hui Tian, J. William Maney, Jr.
  • Publication number: 20190004028
    Abstract: A nanopore sequencing device is disclosed. The nanopore sequencing device includes a working electrode. It further includes a dielectric layer, wherein a portion of the dielectric layer is disposed horizontally adjacent to the working electrode and a portion of the dielectric layer is disposed above and covering a portion of the working electrode, and wherein the dielectric layer forms a well having an opening above an uncovered portion of the working electrode. A base surface area of the working electrode is greater than a base surface area of the opening above the uncovered portion of the working electrode.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 3, 2019
    Inventors: Jennifer Hovis, Hui Tian, Roger J.A. Chen
  • Patent number: 10155979
    Abstract: A method of detecting a lipid bilayer formed in a cell of a nanopore based sequencing chip is disclosed. An integrating capacitor is coupled with a lipid membrane, wherein the lipid membrane is between a working electrode and a counter electrode. An alternating current (AC) voltage is applied to the counter electrode. A voltage across the integrating capacitor is periodically sampled by an analog-to-digital converter (ADC). A change in the sampled voltage across the integrating capacitor in response to a change in the AC voltage is determined. Whether the lipid membrane comprises a lipid bilayer is detected based on the determined change in the sampled voltage across the integrating capacitor in response to the change in the AC voltage.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: December 18, 2018
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Ashraf Wahba, William Nielsen, Jing Luo, Kevin Aliado, Kyle Umeda, Roger J. A. Chen
  • Patent number: 10156541
    Abstract: A system for detecting electrical properties of a molecular complex is disclosed. The system includes an electrode electrically coupled to a molecular complex that outputs an electrical signal affected by an electrical property of the molecular complex, wherein the effect of the electrical property of the molecular complex on the electrical signal is characterized by an expected bandwidth. The system further includes an integrating amplifier circuit configured to receive the electrical signal from the electrode. The integrating amplifier circuit is further configured to selectively amplify and integrate a portion of the electrical signal over time within a predetermined bandwidth, wherein the predetermined bandwidth is selected at least in part based on the expected bandwidth.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 18, 2018
    Assignee: Genia Technologies, Inc.
    Inventor: Roger J. A. Chen
  • Publication number: 20180328910
    Abstract: A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics.
    Type: Application
    Filed: July 26, 2018
    Publication date: November 15, 2018
    Inventors: Roger J.A. Chen, Hui Tian, Santiago Fernandez-Gomez
  • Publication number: 20180267013
    Abstract: A method of analyzing molecules using a nanopore array including a plurality of cells included on a chip is disclosed. Nanopores are caused to be formed in at least a portion of the plurality of the cells. A first physical measurement of the nanopores is evaluated. It is determined whether to cause the molecules to interact with the nanopores. At least a portion of the nanopores is caused to interact with the molecules. A second physical measurement of the nanopores that indicates a property of the molecules is evaluated. It is determined whether to cause the nanopores to be reformed so that the cells may be reused to interact with additional molecules.
    Type: Application
    Filed: May 18, 2018
    Publication date: September 20, 2018
    Inventors: Roger J.A. Chen, David J. Fullagar
  • Patent number: 10060903
    Abstract: A method of exporting measurements of a nanopore sensor on a nanopore based sequencing chip is disclosed. An electrical characteristic associated with the nanopore sensor is measured. The electrical characteristic associated with the nanopore sensor is processed. A summary for the electrical characteristic and one or more previous electrical characteristics is determined. The summary for the electrical characteristic and the one or more previous electrical characteristics are exported. Determining the summary includes determining that the electrical characteristic and at least a portion of the one or more previous electrical characteristics correspond to a base call event at the nanopore sensor. The summary represents the electrical characteristic and the at least a portion of the one or more previous electrical characteristics.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: August 28, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Roger J. A. Chen, Hui Tian, Santiago Fernandez-Gomez
  • Patent number: 10036739
    Abstract: A nanopore sequencing device is disclosed. The nanopore sequencing device includes a working electrode. It further includes a dielectric layer, wherein a portion of the dielectric layer is disposed horizontally adjacent to the working electrode and a portion of the dielectric layer is disposed above and covering a portion of the working electrode, and wherein the dielectric layer forms a well having an opening above an uncovered portion of the working electrode. A base surface area of the working electrode is greater than a base surface area of the opening above the uncovered portion of the working electrode.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: July 31, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Jennifer Hovis, Hui Tian, Roger J. A. Chen
  • Patent number: 10036725
    Abstract: A method of identifying a molecule is disclosed. A molecule is drawn to a nanopore by applying a first voltage signal to a pair of electrodes during a first period, wherein the first voltage signal causes a first ionic current through the nanopore that is indicative of a property of a portion of the molecule proximate to the nanopore. The molecule is released from the nanopore by applying a second voltage signal to the pair of electrodes during a second period, wherein the second voltage signal causes a second ionic current through the nanopore. The first period and the second period are determined based at least in part on a net ionic current through the nanopore comprising the first ionic current and the second ionic current.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 31, 2018
    Assignee: Genia Technologies, Inc.
    Inventor: Roger J. A. Chen
  • Patent number: 10010852
    Abstract: A system for regulating a temperature of a measurement array is disclosed. The system includes a measurement array including a plurality of sensors, wherein the plurality of sensors are integrated onto an integrated circuit die. The system includes a thermal sensor integrated onto the integrated circuit die, wherein the thermal sensor senses a temperature associated with the plurality of sensors. The system further includes a heat pump coupled to the integrated circuit die, wherein the heat pump is controlled by a feedback control circuit including the thermal sensor.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: July 3, 2018
    Assignee: Genia Technologies, Inc.
    Inventor: Roger J. A. Chen
  • Patent number: 10012637
    Abstract: A method of analyzing molecules using a nanopore array including a plurality of cells included on a chip is disclosed. Nanopores are caused to be formed in at least a portion of the plurality of the cells. A first physical measurement of the nanopores is evaluated. It is determined whether to cause the molecules to interact with the nanopores. At least a portion of the nanopores is caused to interact with the molecules. A second physical measurement of the nanopores that indicates a property of the molecules is evaluated. It is determined whether to cause the nanopores to be reformed so that the cells may be reused to interact with additional molecules.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: July 3, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Roger J. A. Chen, David J. Fullagar
  • Publication number: 20180136159
    Abstract: A method of analyzing a molecule is disclosed. A voltage source is selectively connected to or disconnected from a capacitor using a switch controlled by a reset signal. A charge is stored in a capacitor when the voltage source is connected to the capacitor. The capacitor is discharged through a nanopore in a membrane when the voltage source is disconnected from the capacitor. A duty cycle of the reset signal is determined such that the voltage source and the capacitor is connected for at least a one tenth portion of a reset signal period and disconnected for a remaining portion of the reset signal period, such that a voltage across the nanopore is maintained at a higher level during the portion of the reset signal period in which the connection is maintained than during the remaining portion of the reset signal period in which the connection is not maintained.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 17, 2018
    Inventors: Roger J.A. Chen, Hui Tian, J. William Maney
  • Publication number: 20180100827
    Abstract: A system for detecting electrical properties of a molecular complex is disclosed. The system includes an electrode electrically coupled to a molecular complex that outputs an electrical signal affected by an electrical property of the molecular complex, wherein the effect of the electrical property of the molecular complex on the electrical signal is characterized by an expected bandwidth. The system further includes an integrating amplifier circuit configured to receive the electrical signal from the electrode. The integrating amplifier circuit is further configured to selectively amplify and integrate a portion of the electrical signal over time within a predetermined bandwidth, wherein the predetermined bandwidth is selected at least in part based on the expected bandwidth.
    Type: Application
    Filed: November 21, 2017
    Publication date: April 12, 2018
    Inventor: Roger J.A. Chen