Patents by Inventor Roger Kamm

Roger Kamm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230146860
    Abstract: Microfluidic devices with open ports and gel channels for forming perfusable hydrogel vascular networks with holes or ports for samples, and methods of making and using, are provided which integrate interstitial flows to an ex vivo vascularized tissue model. Samples of cells, spheroids, organoids, and tissues can be used for screening of agents for efficacy, toxicity and dosage. The devices create interstitial flow from the top of the gel hole, through the sample toward the vascular networks, and/or luminal flows generated by a pressure difference between two media channels across the vascular network. This system is useful for studying angiogenesis, immune cell migration and testing new immunotherapy drug candidates.
    Type: Application
    Filed: February 23, 2022
    Publication date: May 11, 2023
    Inventors: Roger Kamm, Huu Tuan Nguyen, Sharon Wei Ling Lee
  • Publication number: 20220338465
    Abstract: Microfluidic platforms for forming and culturing perfusable hydrogel vascularized tissues typically include one or more culture chambers. Each culture chamber includes at least two openings overlaid over a gel channel. The gel channel typically includes at least two tissue zones and a trapping or insertion portion positioned between the tissue zones. The trapping or insertion portion permits vascular networks to develop between the two tissue zones containing vascularized tissues and/or vascularized tissue masses. The vascularized tissue masses in the tissue zones of the gel channel are connected indirectly, via the vascular network of the trapping portion. Also described are methods of forming and culturing perfusable vascularized tissue masses directly or indirectly interconnected via vascularized networks.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 27, 2022
    Inventors: Roger Kamm, Zhengpeng Wan, Shun Zhang
  • Publication number: 20090297579
    Abstract: Methods for wound healing or tissue regeneration by means of cell and tissue engineering, including using three-dimensional matrices with cells therein. A three-dimensional matrix, optionally containing cells such as fibroblasts, is inserted Into the wound of a subject. An anti-inflammatory factor may also be used to reduce or suppress the immune response. The wound may be covered to limit exposure to gaseous oxygen, for example, using a membrane. An anticoagulant may also be applied. In addition, cells, such as fibroblasts or stem cells, when cultured within a three-dimensional matrix, under certain conditions, can be induced to form non-fibroblast multipotent cells. When stem cells are cultured in the three-dimensional matrix, at least some of the stem cells remain as stem cells and do not differentiate. Kits for promoting the control of cells within three-dimensional matrices are also disclosed.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 3, 2009
    Applicant: Massachusetts Institute of Technology
    Inventors: Carlos E. Semino, Bernd Rolauffs, Alan Grodzinsky, Roger Kamm, Elena Garreta, Lluis Quintana
  • Publication number: 20030204160
    Abstract: A bypass conduit and related methods include implanting a bypass in the heart between a heart chamber and an at least partially occluded artery to directly flow blood from the chamber to the artery. The bypass conduit is configured to have a higher resistance to blood flow in a first direction than in a second direction without any active flow control mechanism. The bypass conduit may have a first end defining a first opening and a second end defining a second opening and a wall extending between the two ends that defines a lumen extending between the two openings. The ends and the wall of the conduit are configured to have a higher resistance to blood flow in a first direction than in a second direction.
    Type: Application
    Filed: June 10, 2003
    Publication date: October 30, 2003
    Applicant: Percardia, Inc.
    Inventors: Roger Kamm, Eun Bo Shim
  • Patent number: 5954745
    Abstract: A catheter-filter set in an embodiment may be used in a vas through which a biological fluid may flow. This embodiment includes a tubular member, having a lumen disposed along its length and an insertion end for insertion into the vas. The lumen defines a longitudinal axis and a radial direction perpendicular thereto. The embodiment also has a filter, coupled to the tubular member and having a circumference, for trapping undesired particles. Finally, the embodiment includes a resilient member, having compliance in the radial direction, disposed circumferentially about the filter and, when deployed in the vas, forms a seal against the interior wall of the vas. Other embodiments are also provided.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: September 21, 1999
    Inventors: Jonathan Gertler, Roger Kamm