Patents by Inventor Roger L. Boyer

Roger L. Boyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10759301
    Abstract: A method for charging a battery includes detecting, with an electronic processor, a presence of the battery coupled to a charging interface. The method includes receiving, with the electronic processor, a command, the command including a charge mode. The method includes, in response to receiving the command, controlling a charging circuit coupled to the charging interface to charge the battery to a predetermined level based on the charge mode. The method includes, when the battery reaches the predetermined charge level, sending a battery control command, based on the charge mode, to control an active limiting circuit of the battery via a single wire data line coupled to the charging interface.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: September 1, 2020
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Thean Song Ooi, Amy T. Herrmann, Michael D. Geren, Kow Chee Chong, Roger L. Boyer, Muhamad Ridzuan Azizan, Scott J. Arendell, John E. Herrmann, Macwien Krishnamurthi, Roy L. Kerfoot, Jr., William B. Kiger
  • Publication number: 20190135127
    Abstract: A method for charging a battery includes detecting, with an electronic processor, a presence of the battery coupled to a charging interface. The method includes receiving, with the electronic processor, a command, the command including a charge mode. The method includes, in response to receiving the command, controlling a charging circuit coupled to the charging interface to charge the battery to a predetermined level based on the charge mode. The method includes, when the battery reaches the predetermined charge level, sending a battery control command, based on the charge mode, to control an active limiting circuit of the battery via a single wire data line coupled to the charging interface.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 9, 2019
    Inventors: Thean Song Ooi, Amy T. Herrmann, Michael D. Geren, Kow Chee Chong, Roger L. Boyer, Muhamad Ridzuan Azizan, Scott J. Arendell, John E. Herrmann, Macwien Krishnamurthi, Roy L. Kerfoot, JR., William B. Kiger
  • Patent number: 10193361
    Abstract: A method and apparatus for a battery protection circuit. One embodiment provides a method for protecting a battery including receiving, with a comparator, a first voltage, the first voltage including a switch voltage across a current limiting switch provided on a current path of a battery and coupled to a current limiting control circuit to limit current output by the battery. The method also includes receiving, with the comparator, a reference voltage and comparing, with the comparator, the first voltage and the reference voltage. The method further includes controlling, with the comparator, a control switch to open when the first voltage exceeds the reference voltage.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: January 29, 2019
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Scott J. Arendell, Roger L. Boyer, John E. Herrmann
  • Patent number: 10103556
    Abstract: Methods and apparatus for a protection circuit for a battery and a battery connected device during charging are provided. In one embodiment, the apparatus includes a load-blocking switch connected between a rechargeable battery and an electronic device and a charge-blocking switch connected between the rechargeable battery and a charger. The apparatus also includes a safety circuit to detect a voltage across and the current flowing through the rechargeable battery. The safety circuit opens the load-blocking switch and the charge-blocking switch when it detects that the voltage across or the current flowing through the battery exceeds a predetermined threshold.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: October 16, 2018
    Assignee: MOTOROLA SOLUTIONS, INC.
    Inventors: Robert L. Snyder, Muhamad Ridzuan Bin Azizan, Roger L. Boyer, Donald L. Flowers
  • Publication number: 20170331304
    Abstract: A method and apparatus for a battery protection circuit. One embodiment provides a method for protecting a battery including receiving, with a comparator, a first voltage, the first voltage including a switch voltage across a current limiting switch provided on a current path of a battery and coupled to a current limiting control circuit to limit current output by the battery. The method also includes receiving, with the comparator, a reference voltage and comparing, with the comparator, the first voltage and the reference voltage. The method further includes controlling, with the comparator, a control switch to open when the first voltage exceeds the reference voltage.
    Type: Application
    Filed: May 16, 2016
    Publication date: November 16, 2017
    Inventors: Scott J. Arendell, Roger L. Boyer, John E. Herrmann
  • Publication number: 20170141592
    Abstract: Methods and apparatus for a protection circuit for a battery and a battery connected device during charging are provided. In one embodiment, the apparatus includes a load-blocking switch connected between a rechargeable battery and an electronic device and a charge-blocking switch connected between the rechargeable battery and a charger. The apparatus also includes a safety circuit to detect a voltage across and the current flowing through the rechargeable battery. The safety circuit opens the load-blocking switch and the charge-blocking switch when it detects that the voltage across or the current flowing through the battery exceeds a predetermined threshold.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Inventors: Robert L. Snyder, Muhamad Ridzuan Bin Azizan, Roger L. Boyer, Donald L. Flowers
  • Patent number: 6903533
    Abstract: A battery protection circuit is provided that includes a safety circuit and an overpower circuit. The safety circuit monitors the voltage and current of at least one rechargeable cell within the battery pack, and disconnects the cell(s) from the external terminals of the battery pack when either the voltage becomes too high or low, or when excessive current is being drawn from the battery pack. The overpower circuit monitors the power being delivered to or sourced from the battery pack to the load. The overpower circuit actuates when the power exceeds a predetermined threshold, thereby simulating an overcurrent condition in the safety circuit. The overcurrent condition causes a disconnect means, like a transistor, to open, thereby disconnecting the cell(s) from the external terminals. The battery protection circuit then latches in this disconnected state until a load is removed from the terminals of the battery pack.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: June 7, 2005
    Assignee: Motorola, Inc.
    Inventors: Michael D. Geren, Roger L. Boyer, John E. Herrmann, Jenny Collier
  • Patent number: 6771051
    Abstract: This invention includes a thermally stable, low-cost charging circuit for rechargeable batteries. The circuit includes a thermal control circuit that employs a temperature dependent component such as a thermistor or positive temperature coefficient device. The temperature dependent device is thermally coupled to a charging pass element, which is typically a power transistor. When the transistor enters a danger zone, which is a region of operation characterized by elevated power dissipation in the pass element, the thermal control circuit is actuated to regulate the pass element in a constant power mode until the circuit exits the danger zone.
    Type: Grant
    Filed: June 29, 2002
    Date of Patent: August 3, 2004
    Assignee: Motorola, Inc.
    Inventors: John W. Oglesbee, John E. Herrmann, Michael D. Geren, David M. Demuro, Roger L. Boyer
  • Publication number: 20040095097
    Abstract: This invention includes a thermally stable, low-cost charging circuit for rechargeable batteries. The circuit includes a thermal control circuit that employs a temperature dependent component such as a thermistor or positive temperature coefficient device. The temperature dependent device is thermally coupled to a charging pass element, which is typically a power transistor. When the transistor enters a danger zone, which is a region of operation characterized by elevated power dissipation in the pass element, the thermal control circuit is actuated to regulate the pass element in a constant power mode until the circuit exits the danger zone.
    Type: Application
    Filed: June 29, 2002
    Publication date: May 20, 2004
    Inventors: John W. Oglesbee, John E. Herrmann, Michael D. Geren, David M. Demuro, Roger L. Boyer