Patents by Inventor Roger L. Day

Roger L. Day has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11746639
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: September 5, 2023
    Assignee: SESQUI MINING, LLC.
    Inventors: Roger L. Day, James A. Herickhoff
  • Patent number: 11193362
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 7, 2021
    Assignee: Sesqui Mining, LLC
    Inventors: Roger L. Day, James A. Herickhoff
  • Publication number: 20210372257
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Applicant: SESQUI MINING, LLC
    Inventors: Roger L. DAY, James A. HERICKHOFF
  • Patent number: 10995598
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: May 4, 2021
    Assignee: SESQUI MINING, LLC
    Inventors: Roger L. Day, James A. Herickhoff
  • Publication number: 20200400006
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 24, 2020
    Applicant: SESQUI MINING, LLC
    Inventors: Roger L. DAY, James A. HERICKHOFF
  • Publication number: 20200224521
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Application
    Filed: June 26, 2019
    Publication date: July 16, 2020
    Inventors: Roger L. DAY, James A. HERICKHOFF
  • Patent number: 10422210
    Abstract: The invention discloses a method of solution mining trona by injecting an aqueous solvent into an underground cavity comprising trona to dissolve trona in the aqueous solution and removing the aqueous solution from the cavity at about the WTN triple point (the temperature at which solid phase wegscheiderite, trona, and nahcolite can co-exist in an aqueous solution). Alkaline values from the removed aqueous solution are recovered to produce a barren liquor. The method further includes either (i) treating the barren liquor to produce an aqueous solvent or (ii) treating injected aqueous solvent to reduce clogging at the trona dissolution surface caused by supersaturation of sodium bicarbonate, and precipitation of nahcolite and wegscheiderite as the aqueous solution in the cavity approaches saturation of both dissolved sodium bicarbonate and sodium carbonate.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: September 24, 2019
    Assignee: Sesqui Mining, LLC.
    Inventors: Roger L. Day, James A. Herickhoff
  • Patent number: 9464513
    Abstract: A heating system for a subterranean mineral formation according to embodiments of the present invention includes a casing positioned in a bore in the subterranean mineral formation, the casing having an outer surface and an inner surface, a heating element positioned within the casing, a surface connection system having a first end coupled to the heating element within the casing and a second end at a top ground surface above the subterranean mineral formation, a heat transfer fluid contained within the casing, the heat transfer fluid configured to transfer heat between the heating element and the inner surface of the casing, wherein at least a portion of the heat transfer fluid is undergoing phase changes between liquid and gas in order to regulate a temperature of the casing. Fins may be included on the outside of the casing to enhance heat transfer.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 11, 2016
    Assignee: American Shale Oil, LLC
    Inventors: James R. McConaghy, Leonard H. Switzer, III, Alan K. Burnham, Roger L. Day
  • Patent number: 9260918
    Abstract: Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: February 16, 2016
    Assignee: Sesqui Mining LLC.
    Inventors: Roger L. Day, James A. Herickhoff
  • Patent number: 9127541
    Abstract: Heaters are presented to aid in the recovery of hydrocarbon from underground deposits. A heater is provided to a well that has been drilled through an oil-shale deposit. A fuel and an oxidizer are provided to the heater and flue gases are recovered. The heater has a counterflow design and provides a nearly uniform temperature along the heater length. The heater may be designed to operate at different temperatures and depths to pyrolyze or otherwise heat underground hydrocarbon deposits to form a product that is easily recovered and which is useful without substantial further processing. Various counterflow heaters are described including heaters having, down the heater length, distributed reaction zones, distributed catalytic oxidation of the fuel, and discrete or continuous heat generation. The heaters may also utilize inert gases from product recovery or from heater flue gases to control the heater temperature.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: September 8, 2015
    Assignee: AMERICAN SHALE OIL, LLC
    Inventors: Alan K. Burnham, P. Henrik Wallman, James R. McConaghy, Roger L. Day
  • Publication number: 20150083499
    Abstract: Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.
    Type: Application
    Filed: October 28, 2014
    Publication date: March 26, 2015
    Inventors: Roger L. Day, James A. Herickhoff
  • Patent number: 8899691
    Abstract: Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 2, 2014
    Assignee: Sesqui Mining, LLC
    Inventors: Roger L. Day, James A. Herickhoff
  • Publication number: 20130199786
    Abstract: A heating system for a subterranean mineral formation according to embodiments of the present invention includes a casing positioned in a bore in the subterranean mineral formation, the casing having an outer surface and an inner surface, a heating element positioned within the casing, a surface connection system having a first end coupled to the heating element within the casing and a second end at a top ground surface above the subterranean mineral formation, a heat transfer fluid contained within the casing, the heat transfer fluid configured to transfer heat between the heating element and the inner surface of the casing, wherein at least a portion of the heat transfer fluid is undergoing phase changes between liquid and gas in order to regulate a temperature of the casing. Fins may be included on the outside of the casing to enhance heat transfer.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 8, 2013
    Applicant: AMERICAN SHALE OIL, LLC
    Inventors: James R. McConaghy, Leonard H. Switzer, Alan K. Burnham, Roger L. Day
  • Patent number: 8464792
    Abstract: A sub-surface hydrocarbon production system comprising an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons to be produced. A production well extends from the surface to a location proximate the hydrocarbon and a convection passage extends between the energy delivery well and the production well thereby forming a convection loop. The energy delivery well and the production well intersect at a location proximate the hydrocarbon such that the convection loop is in the form of a triangle. Preferably, the convection passage extends upwardly from a point at which the convection passage intersects the production well. The system also includes a heater, such as an electric heater or down-hole burner, disposed in the energy delivery well.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: June 18, 2013
    Assignee: American Shale Oil, LLC
    Inventors: Alan K. Burnham, Roger L. Day, P. Henrick Wallman, James R. McConaghy
  • Publication number: 20120205109
    Abstract: Heater embodiments are presented to aid in the recovery of hydrocarbon from underground deposits. In one embodiment, a heater is provided to a well that has been drilled through an oil-shale deposit. A fuel and an oxidizer are provided to the heater and flue gases are recovered. The heater has a counterflow design and provides a nearly uniform temperature along the heater length. The heater may be designed to operate at different temperatures and depths to pyrolyze or otherwise heat underground hydrocarbon deposits to form a product that is easily recovered and which is useful without substantial further processing. Various embodiments of a counterflow heater are described including heaters having, down the heater length, distributed reaction zones, distributed catalytic oxidation of the fuel, and discrete or continuous heat generation. The heaters may also utilize inert gases from product recovery or from heater flue gases to control the heater temperature.
    Type: Application
    Filed: November 2, 2009
    Publication date: August 16, 2012
    Applicant: AMERICAN SHALE OIL, LLC
    Inventors: Alan K. Burnham, P. Henrik Wallman, James R. McConaghy, Roger L. Day
  • Patent number: 8162043
    Abstract: A process for retorting and extracting sub-surface hydrocarbons. The process comprises drilling an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons. The hydrocarbons are heated from the bottom to form a retort, the retort extending along a portion of the energy delivery well. A vapor tube is extended to a location proximate the retort, the vapor tube having an entrance corresponding to the region of the retort along the energy delivery well that is nearest the surface exit.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 24, 2012
    Assignee: American Shale Oil, LLC
    Inventors: Alan K. Burnham, Roger L. Day, P. Henrick Wallman, James R. McConaghy
  • Publication number: 20120027516
    Abstract: Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: SESQUI MINING, LLC
    Inventors: Roger L. Day, James A. Herickhoff
  • Patent number: 8057765
    Abstract: Disclosed are methods for solution mining of evaporite minerals, such as trona, comprising drilling an access well and at least two lateral boreholes; injecting a fluid; circulating the fluid through the lateral boreholes with a controlled fluid flow; and collecting a pregnant solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity at a temperature sufficient to maintain at least a portion of the solution in the cavity in the Wegscheiderite solid phase region; removing aqueous solution from the cavity; and recovering alkaline values from the removed aqueous solution. Also disclosed are methods of solution mining that include injecting an aqueous solution into an underground trona cavity; removing aqueous solution from the cavity, wherein the temperature of the removed aqueous solution is at about the TWA point temperature; and recovering alkaline values from the removed aqueous solution.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: November 15, 2011
    Assignee: Sesqui Mining, LLC
    Inventors: Roger L. Day, James A. Herickhoff
  • Publication number: 20110259590
    Abstract: A sub-surface hydrocarbon production system comprising an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons to be produced. A production well extends from the surface to a location proximate the hydrocarbon and a convection passage extends between the energy delivery well and the production well thereby forming a convection loop. The energy delivery well and the production well intersect at a location proximate the hydrocarbon such that the convection loop is in the form of a triangle. Preferably, the convection passage extends upwardly from a point at which the convection passage intersects the production well. The system also includes a heater, such as an electric heater or down-hole burner, disposed in the energy delivery well.
    Type: Application
    Filed: May 13, 2010
    Publication date: October 27, 2011
    Applicant: AMERICAN SHALE OIL, LLC
    Inventors: Alan K. Burnham, Roger L. Day, P. Henrick Wallman, James R. McConaghy
  • Publication number: 20110174496
    Abstract: A process for retorting and extracting sub-surface hydrocarbons. The process comprises drilling an energy delivery well extending from the surface to a location proximate a bottom of the hydrocarbons. The hydrocarbons are heated from the bottom to form a retort, the retort extending along a portion of the energy delivery well. A vapor tube is extended to a location proximate the retort, the vapor tube having an entrance corresponding to the region of the retort along the energy delivery well that is nearest the surface exit.
    Type: Application
    Filed: March 3, 2011
    Publication date: July 21, 2011
    Applicant: AMERICAN SHALE OIL, LLC
    Inventors: Alan K. Burnham, Roger L. Day, P. Henrick Wallman, James R. McConaghy