Patents by Inventor Roger L. Royer, Jr.

Roger L. Royer, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9568452
    Abstract: A non-contact evaluation system for evaluating a rope. The system including a transducer and a processor. The transducer is spaced apart from the rope. The transducer configured to output an ultrasonic wave in a transverse direction towards a longitudinal location of the rope, such that at least a portion of the ultrasonic wave passes around a perimeter of the rope, receive the portion of the ultrasonic wave, convert the portion of the ultrasonic wave to a signal, and output the signal. The processor configured to receive the signal, and evaluate the rope based on the signal.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 14, 2017
    Assignee: Actuant Corporation
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, Jr., Steven E. Owens
  • Publication number: 20160169841
    Abstract: A non-contact evaluation system for evaluating a rope. The system including a transducer and a processor. The transducer is spaced apart from the rope. The transducer configured to output an ultrasonic wave in a transverse direction towards a longitudinal location of the rope, such that at least a portion of the ultrasonic wave passes around a perimeter of the rope, receive the portion of the ultrasonic wave, convert the portion of the ultrasonic wave to a signal, and output the signal. The processor configured to receive the signal, and evaluate the rope based on the signal.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 16, 2016
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, JR., Steven E. Owens
  • Patent number: 9255911
    Abstract: A non-contact evaluation system for evaluating a synthetic rope. The system includes a first transducer, a second transducer, and a processor. The first transducer is located at a first position and configured to convert a first electrical signal into a wave directed toward the synthetic rope under test. The wave has characteristics such that at least of a portion of the wave passes around a perimeter of the synthetic rope. The second transducer is located at a second position opposite the first position and radially aligned with the first transducer. The second transducer is also configured to receive and convert the portion of the wave into a second electrical signal. The processor is configured to determine a structural health measure of the synthetic rope based on the second electrical signal.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 9, 2016
    Assignee: Actuant Corporation
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, Jr., Steven E. Owens
  • Publication number: 20150120215
    Abstract: A non-contact evaluation system for evaluating a synthetic rope. The system includes a first transducer, a second transducer, and a processor. The first transducer is located at a first position and configured to convert a first electrical signal into a wave directed toward the synthetic rope under test. The wave has characteristics such that at least of a portion of the wave passes around a perimeter of the synthetic rope. The second transducer is located at a second position opposite the first position and radially aligned with the first transducer. The second transducer is also configured to receive and convert the portion of the wave into a second electrical signal. The processor is configured to determine a structural health measure of the synthetic rope based on the second electrical signal.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 30, 2015
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, JR., Steven E. Owens
  • Patent number: 8958994
    Abstract: A non-contact signal propagation property evaluation system for ropes can be deployed for a number of different applications including, but not limited to, moving lines, e.g., crane or winch and static lines, e.g., mooring lines, stays, etc., to evaluate physical properties of the ropes and, in some cases, to help evaluate structural health of the ropes. The system includes a first transducer for generating ultrasonic waves, a second transducer for receiving ultrasonic waves propagated transversely through and around the rope, and a processor executing computer readable code to determine acoustic propagation properties of the rope.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: February 17, 2015
    Assignee: Actuant Corporation
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, Jr., Steven E. Owens
  • Patent number: 8907665
    Abstract: A system includes at least one strip of ferromagnetic material and a plurality of pulsing/receiving coil circuits. The at least one strip of ferromagnetic material is induced with a bias magnetic field and is coupled to a surface of a structure under test. The plurality of pulsing/receiving coil circuits are aligned with a surface of the at least one strip of the ferromagnetic material. The plurality of pulsing/receiving coil circuits are individually controllable by a number of channels to excite guided waves in the structure under test using at least one of active phased-array focusing or synthetic phased-array focusing of the guided waves.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 9, 2014
    Assignee: FBS, Inc.
    Inventors: Joseph L. Rose, Jason K. Van Velsor, Steven E. Owens, Roger L. Royer, Jr.
  • Patent number: 8217554
    Abstract: An ultrasonic method for removing and/or avoiding unwanted build-up on structures is provided, wherein the term build-up refers to, but is not limited to, ice, dirt, mud, or other wanted debris or contamination. Deicing or anti-icing structures of interest can include, but are not limited to, helicopter rotor blades, other helicopter blade components, fixed wing aircraft components, windshields in aircraft, automobiles, and other vehicles, ship hulls or other ship components, heat exchangers and other tubing where frost or ice could form, air-conditioning components, head lamp and other light coverings, bridge structures and components, and any structure where anti-icing or deicing would be beneficial. One or more ultrasonic actuators permanently embedded or coupled to the structure may be used accomplish the removal. The technique presented herein could also be utilized for non-destructive evaluation and structural health monitoring applications.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: July 10, 2012
    Assignee: FBS, Inc.
    Inventors: Roger L. Royer, Jr., Joseph L. Rose, Edward C. Smith, Jose L. Palacios
  • Publication number: 20120119732
    Abstract: A system includes at least one strip of ferromagnetic material and a plurality of pulsing/receiving coil circuits. The at least one strip of ferromagnetic material is induced with a bias magnetic field and is coupled to a surface of a structure under test. The plurality of pulsing/receiving coil circuits are aligned with a surface of the at least one strip of the ferromagnetic material. The plurality of pulsing/receiving coil circuits are individually controllable by a number of channels to excite guided waves in the structure under test using at least one of active phased-array focusing or synthetic phased-array focusing of the guided waves.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 17, 2012
    Applicant: FBS, INC.
    Inventors: Joseph L. Rose, Jason K. Van Velsor, Steven E. Owens, Roger L. Royer, JR.
  • Publication number: 20120053852
    Abstract: A non-contact signal propagation property evaluation system for ropes can be deployed for a number of different applications including, but not limited to, moving lines, e.g., crane or winch and static lines, e.g., mooring lines, stays, etc., to evaluate physical properties of the ropes and, in some cases, to help evaluate structural health of the ropes. The system includes a first transducer for generating ultrasonic waves, a second transducer for receiving ultrasonic waves propagated transversely through and around the rope, and a processor executing computer readable code to determine acoustic propagation properties of the rope.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 1, 2012
    Inventors: Luis S. Padilla, Philip Bull, Roger L. Royer, JR., Steven E. Owens
  • Patent number: 7938008
    Abstract: A method of performing a non-destructive examination of a piece of material, having the steps of providing an angle beam wedge and at least two transducers placed upon the wedge, wherein the transducers are placed in a phased array, placing the wedge upon the piece of material to be examined, producing a guided wave into the piece of material to be examined, wherein the guided wave is placed into the material through a synthetically changed incident angle, receiving the guided wave from the piece of material, and determining one of a presence of defects and lack of defects in the piece of material from the received guided wave. Transducers used may include 360 degree guided wave, radial polarized units, parallel shear units for shear horizontal activation and guided wave wheel probes.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: May 10, 2011
    Assignee: FBS, Inc.
    Inventors: Steven E. Owens, Joseph L. Rose, Roger L. Royer, Jr.
  • Publication number: 20100031972
    Abstract: An ultrasonic method for removing and/or avoiding unwanted build-up on structures is provided, wherein the term build-up refers to, but is not limited to, ice, dirt, mud, or other wanted debris or contamination. Deicing or anti-icing structures of interest can include, but are not limited to, helicopter rotor blades, other helicopter blade components, fixed wing aircraft components, windshields in aircraft, automobiles, and other vehicles, ship hulls or other ship components, heat exchangers and other tubing where frost or ice could form, air-conditioning components, head lamp and other light coverings, bridge structures and components, and any structure where anti-icing or deicing would be beneficial. One or more ultrasonic actuators permanently embedded or coupled to the structure may be used accomplish the removal. The technique presented herein could also be utilized for non-destructive evaluation and structural health monitoring applications.
    Type: Application
    Filed: May 28, 2009
    Publication date: February 11, 2010
    Applicant: FBS, INC.
    Inventors: Roger L. Royer, JR., Joseph L. Rose, Edward C. Smith, Jose L. Palacios