Patents by Inventor Roger L. Schultz

Roger L. Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8365818
    Abstract: A method and apparatus for delivering repetitive jarring impacts to a stuck object downhole. The jarring tool is deployed on coiled tubing or other tubular well conduit, and fluid pressure is used to cycle the jar without reciprocating the well conduit at the wellhead. A hydraulic reset assembly is included. The hydraulic chamber is in fluid communication with the flow path through the tool. Thus, when the internal fluid pressure inside the tool exceeds the external pressure in the well, the fluid pressure drives the piston in the hydraulic chamber to urge the tool toward the contracted position. In this way, the reset assembly can overcome the tendency of fluid pressure to extend the tool. The reset assembly can be configured to equalize the extension pressure, to prevent undesired cocking of the tool, or to overcome the extension pressure to contract the tool for recocking the jar mechanism.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 5, 2013
    Assignee: Thru Tubing Solutions, Inc.
    Inventors: Roger L. Schultz, Andrew M. Ferguson, Michael L. Connell
  • Publication number: 20130008659
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy W. McDaniel, Mohamed Y. Soliman, Neal G. Skinner
  • Publication number: 20130008656
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy W. McDaniel, Mohamed Y. Soliman, Neal G. Skinner
  • Publication number: 20130008653
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy W. McDaniel, Mohamed Y. Soliman, Neal Gregory Skinner
  • Publication number: 20130008658
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy W. McDaniel, Mohamed Y. Soliman, Neal G. Skinner
  • Publication number: 20130008657
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy W. McDaniel, Mohamed Y. Soliman, Neal G. Skinner
  • Publication number: 20130000906
    Abstract: Methods, systems, and devices related to downhole wellbore operations such as drilling and completing wells in an earth formation include a laser device.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Roger L. Schultz, Loyd E. East, Harold G. Walters, Billy Wilson McDaniel, Mohamed Y. Soliman, Neal G. Skinner
  • Publication number: 20130000909
    Abstract: A method and apparatus for delivering repetitive jarring impacts to a stuck object downhole. The jarring tool is deployed on coiled tubing or other tubular well conduit, and fluid pressure is used to cycle the jar without reciprocating the well conduit at the wellhead. A hydraulic reset assembly is included. The hydraulic chamber is in fluid communication with the flow path through the tool. Thus, when the internal fluid pressure inside the tool exceeds the external pressure in the well, the fluid pressure drives the piston in the hydraulic chamber to urge the tool toward the contracted position. In this way, the reset assembly can overcome the tendency of fluid pressure to extend the tool. The reset assembly can be configured to equalize the extension pressure, to prevent undesired cocking of the tool, or to overcome the extension pressure to contract the tool for recocking the jar mechanism.
    Type: Application
    Filed: May 15, 2012
    Publication date: January 3, 2013
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Andrew M. Ferguson, Michael L. Connell
  • Patent number: 8342244
    Abstract: Methods and apparatuses for releasing a chemical in a well bore are disclosed. One apparatus includes a curved member configured for coupling to a casing, and a hollow member is connected to the curved member. A chemical container is disposed, at least in part, within the hollow space, and the hollow member extends at least partially around a hollow space.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 1, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Steven G. Streich, Roger L. Schultz, Lance E. Brothers, Sam J. Lewis
  • Publication number: 20120292018
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 25, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292019
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 22, 2012
    Applicant: Thru Tubing Solutions, Inc.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292017
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 31, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292020
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 26, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292113
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 31, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292016
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 29, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292116
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 24, 2012
    Publication date: November 22, 2012
    Applicant: Thru Tubing Solutions, Inc.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120291539
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 22, 2012
    Applicant: Thru Tubing Solutions, Inc.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292033
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations. The characteristics of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths. A hardened insert in the outlet of the vortex chamber resists erosion. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: March 31, 2012
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Publication number: 20120292015
    Abstract: A vortex-controlled variable flow resistance device ideal for use in a backpressure tool for advancing drill string in extended reach downhole operations, especially in horizontal wells. The shape, frequency and duration of the pressure waves generated by the device are controlled by the growth and decay of vortices in the vortex chamber(s) of a flow path. The flow path includes a switch, such as a bi-stable fluidic switch, for reversing the direction of the flow in the vortex chamber. The flow path may include multiple vortex chambers, and the device may include multiple flow paths, through which flow may be parallel or sequential. This device generates backpressures of short duration and slower frequencies approaching the resonant frequency of the drill string, which maximizes axial motion in the drill sting and weight on the bit. Additionally, fluid pulses produced by the tool enhance debris removal ahead of the bit.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Applicant: THRU TUBING SOLUTIONS, INC.
    Inventors: Roger L. Schultz, Michael L. Connell, Andrew M. Ferguson
  • Patent number: 8291976
    Abstract: A method of servicing a wellbore, comprising providing a fluid diode in fluid communication with the wellbore, and transferring a fluid through the fluid diode. A fluid flow control tool, comprising a tubular diode sleeve comprising a diode aperture, a tubular inner ported sleeve received concentrically within the diode sleeve, the inner ported sleeve comprising an inner port in fluid communication with the diode aperture, and a tubular outer ported sleeved within which the diode sleeve is received concentrically, the outer ported sleeve comprising an outer port in fluid communication with the diode aperture, wherein a shape of the diode aperture, a location of the inner port relative to the diode aperture, and a location of the outer port relative to the diode aperture provide a fluid flow resistance to fluid transferred to the inner port from the outer port and a different fluid flow resistance to fluid transferred to the outer port from the inner port.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 23, 2012
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Roger L. Schultz, Robert L. Pipkin, Travis W. Cavender