Patents by Inventor Roger Van Boeyen

Roger Van Boeyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9567679
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 14, 2017
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet, Roger Van Boeyen, Kevin Beverage
  • Publication number: 20160315333
    Abstract: The present disclosure is directed towards the design of bipolar plates for use in conduction-cooled electrochemical cells. Heat generated during the operation of the cell is removed from the active area of the cell to the periphery of the cell via the one or more bipolar plates in the cell. The one or more bipolar plates are configured to function as heat sinks to collect heat from the active area of the cell and to conduct the heat to the periphery of the plate where the heat is removed by traditional heat transfer means. The boundary of the one or more bipolar plates can be provided with heat dissipation structures to facilitate removal of heat from the plates. To function as effective heat sinks, the thickness of the one or more bipolar plates can be determined based on the rate of heat generation in the cell during operation, the thermal conductivity (“k”) of the material selected to form the plate, and the desired temperature gradient in a direction orthogonal to the plate (“?T”).
    Type: Application
    Filed: July 6, 2016
    Publication date: October 27, 2016
    Inventors: Scott Blanchet, Benjamin Lunt, Edward Domit, Roger Van Boeyen
  • Patent number: 9413016
    Abstract: The present disclosure is directed towards the design of bipolar plates for use in conduction-cooled electrochemical cells. Heat generated during the operation of the cell is removed from the active area of the cell to the periphery of the cell via the one or more bipolar plates in the cell. The one or more bipolar plates are configured to function as heat sinks to collect heat from the active area of the cell and to conduct the heat to the periphery of the plate where the heat is removed by traditional heat transfer means. The boundary of the one or more bipolar plates can be provided with heat dissipation structures to facilitate removal of heat from the plates. To function as effective heat sinks, the thickness of the one or more bipolar plates can be determined based on the rate of heat generation in the cell during operation, the thermal conductivity (“k”) of the material selected to form the plate, and the desired temperature gradient in a direction orthogonal to the plate (“?T”).
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 9, 2016
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Scott Blanchet, Benjamin Lunt, Edward Domit, Roger Van Boeyen
  • Publication number: 20160060775
    Abstract: A method of sealing a multi-component bipolar plate is disclosed. The method may include inserting a first seal between a first component and a second component, wherein the first seal is aligned with a first plurality of protrusions formed on a surface of at least one of the first component and the second component. The method may also include compressing the first component and the second component to cause the penetration of the first plurality of protrusions into the first seal. The method may further include plastically deforming the first seal in order to create a first sealing surface between the first component and the second component.
    Type: Application
    Filed: August 26, 2015
    Publication date: March 3, 2016
    Applicant: NUVERA FUEL CELLS, INC.
    Inventors: Edward Domit, Scott Blanchet, Roger Van Boeyen, Kevin Beverage
  • Publication number: 20150030957
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The membrane electrode assembly comprises an anode compartment, a cathode compartment, and a proton exchange membrane disposed therebetween. The cell further includes a sealing surface formed in one of the pair of bipolar plates and a gasket located between the sealing surface and the proton exchange membrane. The gasket is configured to plastically deform to create a seal about one of the cathode compartment or the anode compartment. The sealing surface can include one or more protrusions.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Applicant: NUVERA FUEL CELLS, INC.
    Inventors: Roger VAN BOEYEN, Edward DOMIT, Kevin BEVERAGE, Scott BLANCHET, John STANG
  • Publication number: 20140238845
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 28, 2014
    Applicant: NUVERA FUEL CELLS, INC.
    Inventors: Ed DOMIT, Scott BLANCHET, Roger VAN BOEYEN, Kevin BEVERAGE
  • Publication number: 20140051007
    Abstract: The present disclosure is directed towards the design of electrochemical cells for use in high pressure or high differential pressure operations. The electrochemical cells of the present disclosure have non-circular external pressure boundaries, i.e., the cells have non-circular profiles. In such cells, the internal fluid pressure during operation is balanced by the axial tensile forces developed in the bipolar plates, which prevent the external pressure boundaries of the cells from flexing or deforming. That is, the bipolar plates are configured to function as tension members during operation of the cells. To function as an effective tension member, the thickness of a particular bipolar plate is determined based on the yield strength of the material selected for fabricating the bipolar plate, the internal fluid pressure in the flow structure adjacent to the bipolar plate, and the thickness of the adjacent flow structure.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: Nuvera Fuel Cells, Inc.
    Inventors: Scott Blanchet, Benjamin Lunt, Ed Domit, Kevin Beverage, Roger Van Boeyen, Wonseok Yoon
  • Publication number: 20130337366
    Abstract: The design and method of fabrication of a three-dimensional, porous flow structure for use in a high differential pressure electrochemical cell is described. The flow structure is formed by compacting a highly porous metallic substrate and laminating at least one micro-porous material layer onto the compacted substrate. The flow structure provides void volume greater than about 55% and yield strength greater than about 12,000 psi. In one embodiment, the flow structure comprises a porosity gradient towards the electrolyte membrane, which helps in redistributing mechanical load from the electrolyte membrane throughout the structural elements of the open, porous flow structure, while simultaneously maintaining sufficient fluid permeability and electrical conductivity through the flow structure.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 19, 2013
    Inventors: Scott Blanchet, Roger Van Boeyen
  • Publication number: 20090119989
    Abstract: A hydrogen generator, comprising (101), comprising (a) a reaction chamber (115) equipped with a tortuous passageway (247) for the flow of reactants therethrough, said passageway containing a catalyst disposed on a surface thereof; (b) a fluid; and (c) a hydrogen-containing material (125) that reacts with said fluid in the presence of said catalyst to generate hydrogen gas.
    Type: Application
    Filed: September 2, 2008
    Publication date: May 14, 2009
    Inventors: Sandra Withers-Kirby, Jay Neutzler, Roger Van Boeyen, Mehmet Kesmez, Jady Stevens