Patents by Inventor Rohit Sudhir Shenoy

Rohit Sudhir Shenoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8250010
    Abstract: According to embodiments of the invention, a system, method and computer program product producing spike-dependent plasticity in an artificial synapse.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: August 21, 2012
    Assignee: International Business Machines Corporation
    Inventors: Dharmendra Shantilal Modha, Rohit Sudhir Shenoy
  • Patent number: 8114723
    Abstract: A structure, memory devices using the structure, and methods of fabricating the structure. The structure includes: an array of nano-fins, each nano-fin comprising an elongated block of semiconductor material extending axially along a first direction, the nano-fins arranged in groups of at least two nano-fins each, wherein ends of nano-fins of each adjacent group of nano-fins are staggered with respect to each other on both a first and a second side of the array; wherein nano-fins of each group of nano-fins are electrically connected to a common contact that is specific to each group of nano-fins such that the common contacts comprise a first common contact on the first side of the array and a second common contact on the second side of the array; and wherein each group of nano-fins has at least two gates that electrically control the conductance of nano-fins of the each group of nano-fins.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Patent number: 7829926
    Abstract: A demultiplexer using transistors for accessing memory cell arrays. The demultiplexer includes (a) a substrate; (b) 2N semiconductor regions which are parallel to one another and run in a first direction; (c) first N gate electrode lines, which (i) run in a second direction which is perpendicular to the first direction, (ii) are electrically insulated from the 2N semiconductor regions, and (iii) are disposed between the first plurality of memory cells and the contact region; (d) a contact region; (e) a first plurality of memory cells. An intersection transistor exists at each of intersections between the first N gate electrode lines and the 2N semiconductor regions. In response to pre-specified voltage potentials being applied to the contact region and the first N gate electrode lines, memory cells of the first plurality of memory cells disposed on only one of the 2N semiconductor regions are selected.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Publication number: 20100248441
    Abstract: A structure, memory devices using the structure, and methods of fabricating the structure. The structure includes: an array of nano-fins, each nano-fin comprising an elongated block of semiconductor material extending axially along a first direction, the nano-fins arranged in groups of at least two nano-fins each, wherein ends of nano-fins of each adjacent group of nano-fins are staggered with respect to each other on both a first and a second side of the array; wherein nano-fins of each group of nano-fins are electrically connected to a common contact that is specific to each group of nano-fins such that the common contacts comprise a first common contact on the first side of the array and a second common contact on the second side of the array; and wherein each group of nano-fins has at least two gates that electrically control the conductance of nano-fins of the each group of nano-fins.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Patent number: 7763932
    Abstract: A structure, memory devices using the structure, and methods of fabricating the structure. The structure includes: an array of nano-fins, each nano-fin comprising an elongated block of semiconductor material extending axially along a first direction, the nano-fins arranged in groups of at least two nano-fins each, wherein ends of nano-fins of each adjacent group of nano-fins are staggered with respect to each other on both a first and a second side of the array; wherein nano-fins of each group of nano-fins are electrically connected to a common contact that is specific to each group of nano-fins such that the common contacts comprise a first common contact on the first side of the array and a second common contact on the second side of the array; and wherein each group of nano-fins has at least two gates that electrically control the conductance of nano-fins of the each group of nano-fins.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: July 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Publication number: 20080203438
    Abstract: A demultiplexer using transistors for accessing memory cell arrays. The demultiplexer includes (a) a substrate; (b) 2N semiconductor regions which are parallel to one another and run in a first direction; (c) first N gate electrode lines, which (i) run in a second direction which is perpendicular to the first direction, (ii) are electrically insulated from the 2N semiconductor regions, and (iii) are disposed between the first plurality of memory cells and the contact region; (d) a contact region; (e) a first plurality of memory cells. An intersection transistor exists at each of intersections between the first N gate electrode lines and the 2N semiconductor regions. In response to pre-specified voltage potentials being applied to the contact region and the first N gate electrode lines, memory cells of the first plurality of memory cells disposed on only one of the 2N semiconductor regions are selected.
    Type: Application
    Filed: May 5, 2008
    Publication date: August 28, 2008
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Patent number: 7393739
    Abstract: A demultiplexer using transistors for accessing memory cell arrays. The demultiplexer includes (a) a substrate; (b) 2N semiconductor regions which are parallel to one another and run in a first direction; (c) first N gate electrode lines, which (i) run in a second direction which is perpendicular to the first direction, (ii) are electrically insulated from the 2N semiconductor regions, and (iii) are disposed between the first plurality of memory cells and the contact region; (d) a contact region; (e) a first plurality of memory cells. An intersection transistor exists at each of intersections between the first N gate electrode lines and the 2N semiconductor regions. In response to pre-specified voltage potentials being applied to the contact region and the first N gate electrode lines, memory cells of the first plurality of memory cells disposed on only one of the 2N semiconductor regions are selected.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Publication number: 20080054306
    Abstract: A demultiplexer using transistors for accessing memory cell arrays. The demultiplexer includes (a) a substrate; (b) 2N semiconductor regions which are parallel to one another and run in a first direction; (c) first N gate electrode lines, which (i) run in a second direction which is perpendicular to the first direction, (ii) are electrically insulated from the 2N semiconductor regions, and (iii) are disposed between the first plurality of memory cells and the contact region; (d) a contact region; (e) a first plurality of memory cells. An intersection transistor exists at each of intersections between the first N gate electrode lines and the 2N semiconductor regions. In response to pre-specified voltage potentials being applied to the contact region and the first N gate electrode lines, memory cells of the first plurality of memory cells disposed on only one of the 2N semiconductor regions are selected.
    Type: Application
    Filed: August 30, 2006
    Publication date: March 6, 2008
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy