Patents by Inventor Rohit Vijay
Rohit Vijay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150218466Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.Type: ApplicationFiled: February 11, 2015Publication date: August 6, 2015Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Krista M. Prentice, Michel Daage, Ajit B. Dandekar, Christopher G. Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
-
Publication number: 20150175498Abstract: Embodiments of the invention provide processes for catalytically converting oxygenates to hydrocarbon products having an increased C6-C8 aromatics content therein. Particular processes include (a) providing a first mixture comprising ?10.0 wt. % of at least one oxygenate, based on the weight of the first mixture; (b) contacting the first mixture with a catalyst to convert the first mixture to a product stream including water, one or more hydrocarbons, hydrogen, and one or more oxygenates, wherein the catalyst comprises at least one molecular sieve and at least one element selected from Groups 2-14 of the Periodic Table and the hydrocarbons comprise ?30.0 wt. % of aromatics, based on the weight of the hydrocarbons in the product stream; and (c) separating from the product stream at least one water-rich stream, at least one aromatic-rich hydrocarbon stream, and at least one aromatic-depleted hydrocarbon stream.Type: ApplicationFiled: December 4, 2014Publication date: June 25, 2015Inventors: John D. OU, Machteld M. Mertens, Linelle T. Jacob, Stephen J. McCarthy, Rohit Vijay, Jeevan S. Abichandani
-
Publication number: 20150174561Abstract: A catalyst composition comprises a self-bound zeolite and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10?2 sec?1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).Type: ApplicationFiled: December 4, 2014Publication date: June 25, 2015Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Stephen J. McCarthy, Rohit Vijay, Brett Loveless
-
Publication number: 20150174563Abstract: A catalyst composition includes a zeolite, a binder, and a Group 12 transition metal selected from the group consisting of Zn, Cd, or a combination thereof, the zeolite having a silicon to aluminum ratio of at least about 10, the catalyst composition comprising about 50 wt % or less of the binder based on a total weight of the catalyst composition, the catalyst composition having a micropore surface area of at least about 340 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of (a) a mesoporosity of greater than about 20 m2/g; (b) a diffusivity for 2,2-dimethylbutane of greater than about 1×10?2 sec?1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (about 8 kPa).Type: ApplicationFiled: December 4, 2014Publication date: June 25, 2015Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Stephen J. McCarthy, Rohit Vijay, Brett Loveless
-
Publication number: 20150174562Abstract: A catalyst composition comprising a zeolite, an alumina binder, and a Group 12 transition metal selected from Zn and/or Cd, the zeolite having a Si/Al ratio of at least about 10 and a micropore surface area of at least about 340 m2/g, the catalyst composition comprising about 50 wt % or less of the binder, based on a total weight of the catalyst composition, and having a micropore surface area of at least about 290 m2/g, a molar ratio of Group 12 transition metal to aluminum of about 0.1 to about 1.3, and at least one of: a mesoporosity of about 20 m2/g to about 120 m2/g; a diffusivity for 2,2-dimethylbutane of greater than about 1×10?2 sec?1 when measured at a temperature of about 120° C. and a 2,2-dimethylbutane pressure of about 60 torr (8 kPa); and a combined micropore surface area and mesoporosity of at least about 380 m2/g.Type: ApplicationFiled: December 4, 2014Publication date: June 25, 2015Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Stephen J. McCarthy, Rohit Vijay, Brett Loveless
-
Publication number: 20150174570Abstract: Catalyst compositions including a zeolite having a molar ratio of silicon to aluminum of about 10.0 to about 300.0; a Group 10-12 element and combinations thereof; a Group 15 element and combinations thereof; and optionally, a binder, wherein the catalyst composition has a molar ratio of Group 15 element to Group 10-12 element of about 0.01 to about 10.0 are disclosed. Methods of converting organic compounds to aromatics using such catalyst compositions are also disclosed.Type: ApplicationFiled: December 4, 2014Publication date: June 25, 2015Applicant: ExxonMobil Research and Engineering CompanyInventors: Brett Loveless, Rohit Vijay, Samia Ilias, Stephen J. McCarthy
-
Patent number: 8992764Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.Type: GrantFiled: June 27, 2011Date of Patent: March 31, 2015Assignee: ExxonMobil Research and Engineering CompanyInventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
-
Patent number: 8617383Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or with only a high pressure separation so that the dewaxing still occurs under sour conditions. Various combinations of hydrotreating, catalytic dewaxing, hydrocracking, and hydrofinishing can be used to produce fuel products and lubricant base oil products.Type: GrantFiled: June 27, 2011Date of Patent: December 31, 2013Assignee: ExxonMobil Research and Engineering CompanyInventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
-
Patent number: 8424000Abstract: Various systems and methods can provide high availability of an application executing in a highly-available virtual machine environment. One method involves receiving information indicating a state of an application executing in a virtual machine from a monitoring agent executing in the virtual machine. In response to receiving the information, the method involves determining whether the virtual machine should be restarted. Based upon that determination, the method then determines whether the monitoring agent should send a heartbeat message to a virtualization controller prior to expiration of a timeout interval. The virtualization controller is configured to restart the virtual machine if the virtual machine does not send the heartbeat message prior to expiration of the timeout interval.Type: GrantFiled: July 30, 2010Date of Patent: April 16, 2013Assignee: Symantec CorporationInventors: Jog Rohit Vijay, Sarin Sumit Manmohan
-
Patent number: 8369388Abstract: Embodiments of a wireless transceiver are provided. Embodiments can be used in multiple-input-multiple-output (MIMO) wireless transceivers. In an embodiment, radio control signal bundles are provided as direct parallel interconnects between digital signal processing modules and the radio module of the wireless transceiver to enable a precise low-latency control of radio functions. In another embodiment, a separate physical line is provided to control each radio setting of the radio module, thereby enabling simultaneous real-time control of any number of radio settings. In a further embodiment, the various digital and analog components of the wireless transceiver are integrated within a single chip of the same process technology.Type: GrantFiled: December 21, 2007Date of Patent: February 5, 2013Assignee: Broadcom CorporationInventors: Joachim S. Hammerschmidt, Arya Reza Behzad, Keith Andrews Carter, Simeon Furrer, Rohit Vijay Gaikwad, Jason Alexander Trachewsky, Amit Bagchi, Rajendra Tushar Moorti, Venkateswara Rao Kodavati
-
Publication number: 20120030670Abstract: Various systems and methods can provide high availability of an application executing in a highly-available virtual machine environment. One method involves receiving information indicating a state of an application executing in a virtual machine from a monitoring agent executing in the virtual machine. In response to receiving the information, the method involves determining whether the virtual machine should be restarted. Based upon that determination, the method then determines whether the monitoring agent should send a heartbeat message to a virtualization controller prior to expiration of a timeout interval. The virtualization controller is configured to restart the virtual machine if the virtual machine does not send the heartbeat message prior to expiration of the timeout interval.Type: ApplicationFiled: July 30, 2010Publication date: February 2, 2012Inventors: Jog Rohit Vijay, Sarin Sumit Manmohan
-
Publication number: 20110315596Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants. The integrated process includes an initial dewaxing of a feed under sour conditions, optional hydrocracking of the dewaxed feed, and a separation to form a first diesel product and a bottoms fraction. The bottoms fraction is then exposed to additional hydrocracking and dewaxing to form a second diesel product and optionally a lubricant base oil product. Alternatively, a feedstock can be hydrotreated, fractionated, dewaxed, and then hydrocracked to form a diesel fuel and a dewaxed, hydrocracked bottoms fraction that is optionally suitable for use as a lubricant base oil.Type: ApplicationFiled: June 27, 2011Publication date: December 29, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
-
Publication number: 20110315599Abstract: An integrated process for producing naphtha fuel, diesel fuel and/or lubricant base oils from feedstocks under sour conditions is provided. The ability to process feedstocks under higher sulfur and/or nitrogen conditions allows for reduced cost processing and increases the flexibility in selecting a suitable feedstock. The sour feed can be delivered to a catalytic dewaxing step without any separation of sulfur and nitrogen contaminants, or with only a high pressure separation so that the dewaxing still occurs under sour conditions. Various combinations of hydrotreating, catalytic dewaxing, hydrocracking, and hydrofinishing can be used to produce fuel products and lubricant base oil products.Type: ApplicationFiled: June 27, 2011Publication date: December 29, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Krista Marie Prentice, Michel Daage, Ajit Bhaskar Dandekar, Christopher Gordon Oliveri, Rohit Vijay, Stephen J. McCarthy, Wenyih F. Lai, Bradley R. Fingland
-
Publication number: 20110079542Abstract: Processes are provided for using employing lower activity hydrodesulfurization catalysts while achieving a desired product sulfur content. After determining effective reaction conditions for hydrodesulfurization using a reference catalyst system, an upstream portion of the catalyst system can be replaced with a lower activity upstream portion. The process allows tailored product sulfur levels to be achieved using reaction conditions similar to those for the reference catalyst system.Type: ApplicationFiled: September 24, 2010Publication date: April 7, 2011Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Edward S. Ellis, Rohit Vijay, Matthew Bennett
-
Patent number: 7811536Abstract: Nitrogen oxides (NOx) storage catalysts comprising cobalt and barium with a lean NOx storage ratio of 1.3 or greater. The NOx storage catalysts can be used to reduce NOx emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NOx storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.Type: GrantFiled: July 21, 2006Date of Patent: October 12, 2010Assignee: University of DelawareInventors: Jochen Lauterbach, Christopher M. Snively, Rohit Vijay, Reed Hendershot, Ben Feist
-
Publication number: 20080310487Abstract: Embodiments of a wireless transceiver are provided. Embodiments can be used in multiple-input-multiple-output (MIMO) wireless transceivers. In an embodiment, radio control signal bundles are provided as direct parallel interconnects between digital signal processing modules and the radio module of the wireless transceiver to enable a precise low-latency control of radio functions. In another embodiment, a separate physical line is provided to control each radio setting of the radio module, thereby enabling simultaneous real-time control of any number of radio settings. In a further embodiment, the various digital and analog components of the wireless transceiver are integrated within a single chip of the same process technology.Type: ApplicationFiled: December 21, 2007Publication date: December 18, 2008Applicant: Broadcom CorporationInventors: Joachim S. Hammerschmidt, Arya Reza Behzad, Keith Andrews Carter, Simeon Furrer, Rohit Vijay Gaikwad, Jason Alexander Trachewsky, Amit Bagchi, Rajendra Tushar Moorti, Venkateswara Rao Kodavati
-
Publication number: 20070053818Abstract: Nitrogen oxides (NOx) storage catalysts comprising cobalt and barium with a lean NOx storage ratio of 1.3 or greater. The NOx storage catalysts can be used to reduce NO, emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NOx storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.Type: ApplicationFiled: July 21, 2006Publication date: March 8, 2007Applicant: UNIVERSITY OF DELAWAREInventors: Jochen Lauterbach, Christopher Snively, Rohit Vijay, Reed Hendershot, Ben Feist, Sindia Rivera-Jimenez